
A Revised Modified Cholesky
Factorization Algorithm 1

Robert B. Schnabel
Elizabeth Eskow

University of Colorado at Boulder
Department of Computer Science

Campus Box 430
Boulder, Colorado 80309-0430 USA

1Research supported by Air Force Office of Scientific Research Grant F49620-97-1-0164, Army Re-
search Office Contract DAAH04-94-G-0228, and NSF grant CDA-9502956.

Abstract

A modified Cholesky factorization algorithm introduced originally by Gill and
Murray and refined by Gill, Murray and Wright, is used extensively in optimization
algorithms. Since its introduction in 1990, a different modified Cholesky factoriza-
tion of Schnabel and Eskow has also gained widespread usage. Compared with the
Gill-Murray-Wright algorithm, the Schnabel-Eskow algorithm has a smaller a priori
bound on the perturbation added to ensure positive definiteness, and some com-
putational advantages, especially for large problems. Users of the Schnabel-Eskow
algorithm, however, have reported cases from two different contexts where it makes
a far larger modification to the original matrix than is necessary and than is made
by the Gill-Murray-Wright method. This paper reports a simple modification to
the Schnabel-Eskow algorithm that appears to correct all the known computational
difficulties with the method, without harming its theoretical properties, or its compu-
tational behavior in any other cases. In new computational tests, the modifications
to the original matrix made by the new algorithm appear virtually always to be
smaller than those made by the Gill-Murray-Wright algorithm, sometimes by signif-
icant amounts. The perturbed matrix is allowed to be more ill-conditioned with the
new algorithm, but this seems to be appropriate in the known contexts where the
underlying problem is ill-conditioned.

1 Introduction

Modified Cholesky factorizations are widely used in optimization. A numerically stable
modified Cholesky factorization algorithm was introduced by Gill and Murray in 1974
[9]. Given a symmetric, not necessarily positive definite matrix A ∈ Rn×n, a modified
Cholesky factorization calculates a Cholesky (i.e. LLT or LDLT) factorization of a
positive definite matrix A + E in a way that attempts to satisfy four goals: 1) If A is
safely positive definite, E is 0 ; 2) If A is indefinite, ‖E‖∞ is not much greater than the
magnitude of the most negative eigenvalue of A, λ1(A); 3) A + E is reasonably well-
conditioned; 4) The cost of the factorization is only a small multiple of n2 operations
more than the O(n3) cost of the standard Cholesky factorization.

The factorization of Gill and Murray was subsequently refined by Gill, Murray and
Wright [10] (hereafter referred to as GMW81). This version has been widely used in
optimization methods since its inception. More recently, Schnabel and Eskow [12] (here-
after referred to as SE90) introduced a factorization that is based on different techniques.
Both factorizations choose E to be diagonal. Both satisfy properties 1, 3 and 4 men-
tioned above; they differ in how closely they satisfy property 2. The SE90 factorization
has a significantly smaller a priori bound on ‖E‖, where in this paper ‖E‖ is always the
infinity norm, and in computational tests, it appears that ‖E‖ is smaller for the SE90
factorization than the GWM81 factorization in most cases as well. In practice, both
factorizations appear very satisfactory for use in optimization algorithms and both are
now widely used.

While the overall computational experience with the SE90 factorization since its in-
troduction appears to have been quite good, a few instances have arisen where its perfor-
mance is poor. The SE90 paper contained one example where the amount that is added
to A, while within the theoretical bounds, is far larger than the magnitude of λ1(A),
and also far larger than the amount added by the GWM81 factorization. In the first

1

years following the publication of the SE90 algorithm, Wolfgang Hartmann of SAS made
us aware of another problem with similar behavior. More recently, David Gay, Michael
Overton and Margaret Wright encountered a class of problems, arising in primal-dual
interior methods for constrained optimization [8], where the SE90 factorization again
sometimes added far too much, while the GMW81 factorization performed well.

All the known examples where the SE90 factorization adds too much (i.e. the ratio of
‖E‖ to the magnitude of the most negative eigenvalue of A is greater than, say, 5) turn
out to be matrices A that are the sum of a large positive semi-definite matrix B and a
much smaller (in norm) indefinite matrix C. In these cases, one wants ‖E‖ to be of order
‖C‖, but instead the SE90 algorithm sometimes produces ‖E‖ of order ‖B‖. In the
experience of Gay, Overton and Wright, this introduced difficulties in the constrained
optimization algorithm using the SE90 factorization that were not experienced when
using the GWM81 factorization.

This paper introduces a simple modification to the SE90 modified Cholesky factor-
ization that remedies these difficulties, without harming its computational performance
in any other known cases. The modification is to tighten slightly the condition under
which the algorithm switches from Phase 1 (standard Cholesky factorization) to Phase
2, thereby making it slightly more likely to stay in Phase 1 at a given iteration of the
factorization. The theoretical effect of this change is to increase the upper bound on ‖E‖
by a factor of at most 1.1. The modification resolves all the problem cases for the SE90
factorization of which we are aware.

Section 2 contains brief background on the modified Cholesky factorization, including
the methods of GMW81 and SE90. This section is not intended to be a comprehensive
reference; for more background on the modified Cholesky factorization or its use in
optimization, see GMW81, SE90, or Dennis and Schnabel [7]. Section 3 motivates the
change in the SE90 example that this paper introduces, using the problematic example
from SE90. In Section 4 we present the complete new algorithm; several other very minor
changes related to the main change and to badly conditioned problems are included.
Section 5 briefly presents the theoretical results for the new method. In Section 6 we
summarize the results of computational tests of the new algorithm, and the methods
of GMW81 and SE90, on the problems of Gay, Overton and Wright, on a problem
of Hartmann, and on the random test problems that were used in SE90 to assess the
behavior of the factorizations. Fortran code for the revised factorization will be available
from the authors.

2 Brief Background on Modified Cholesky Factorizations

The modified Cholesky procedures of GMW and SE90, like the standard Cholesky fac-
torization, can be viewed as recursive procedures. At the beginning of stage j, an
(n − j + 1) × (n − j + 1) submatrix Aj remains to be factored (with A1 = A). We
assume that Aj has the form

Aj =

[
αj aTj
aj Âj

]
(2.1)

2

where αj ∈ R is the current jth diagonal element and is called the pivot, aj is the current
vector of elements in column j below the diagonal, and Âj ∈ R(n−j)×(n−j). The modified
Cholesky factorization chooses a nonnegative amount δj to add to αj, and then calculates
Ljj =

√
αj + δj , Lij = (aj)i/Ljj, i = j + 1, · · · , n, and

Aj+1 = Âj −
aja

T
j

αj + δj
. (2.2)

The challenge in the modified Cholesky factorization is choosing each δj . The algo-
rithm must guarantee that each δj = 0 if A turns out to be safely positive definite. It
also must employ some form of lookahead so that if A is not positive definite, δj is chosen
to be an appropriate positive quantity beginning at a sufficiently early iteration of the
factorization. This is not trivial; for example, waiting to set δj > 0 until αj first becomes
negative and then adding amounts δj > −αj is not satisfactory, as it usually will result
in ‖E‖ much greater than |λ1|(A).

The algorithm of GMW81 chooses each δj to be the smallest non-negative number
for which

0 ≤ ‖aj‖
2
∞

αj + δj
≤ β2 (2.3)

(with a minimum of δj = −2αj if αj < 0), where β is an a priori bound selected to
minimize a worst-case bound on ‖E‖ and also to assure that E = 0 if A is safely positive
definite. The result, with ε denoting machine precision, is

β2 = max{γ, ξ/
√
n2 − 1, ε}, where γ = maxi|Aii| and ξ = maxj<i|Aij |. (2.4)

The requirement that β2 ≥ γ guarantees E = 0 if A is positive definite. The overall
a priori bound on ‖E‖GMW depends on the largest element in brackets in (2.4); the
smallest upper bound is

n2γ + 2(n− 1)ξ. (2.5)

which is achieved when β2 = ξ/
√
n2 − 1.

The method of SE90 is divided into two phases. The first phase consists of a normal
Cholesky factorization in which the factors are overwritten on A. Step j of Phase 1
is allowed to proceed only if αj is positive and the smallest diagonal of the remaining
submatrix at the next step, i.e. at step j + 1, is “safely” positive, using the following
test. Let the vector ζ be defined as

ζi = Aii −A2
ij/αj , i > j. (2.6)

SE90 completes step j of the standard Cholesky algorithm only if

miniζi ≥ τγ, where τ = ε
1
3 , (2.7)

and otherwise switches to Phase 2. Note that the components of ζ would be the diagonal
elements of Aj+1 if step j of the unmodified Cholesky procedure were to be completed;

3

see (2.2). Satisfaction of (2.7) thus guarantees that all diagonal elements of Aj+1 are
positive, so that there is no test of positivity of αj for j > 1.

Let K1 denote the number of steps completed during Phase 1, so that δi = 0 for
i = 1, ...,K1. If K1 = n, A is positive definite and the algorithm terminates. If K1 < n,
let

γ̂ = maxK1<i|Aii| and ξ̂ = maxK1<i,j<i|Aij |. (2.8)

It is shown in SE90 that the test (2.7) for termination of Phase 1 guarantees that

γ̂ ≤ γ and ξ̂ ≤ γ + ξ. (2.9)

If K1 < n− 2, then for j = K1 + 1, ..., n − 2, the value of δj is

δj = max{0,−αj + max{‖aj‖1, τγ}, δj−1} (2.10)

This choice of δj causes the Gerschgorin intervals of the principal submatrices Aj to
contract at each iteration and leads to the following bound:

‖E‖SE ≤ G+
2τ

1− τ (G+ γ) (2.11)

where

G ≤ (n− (k + 1))(γ + ξ) if K1 > 0 and G ≤ γ + (n− 1)ξ if K1 = 0. (2.12)

The elements δn−1 and δn are chosen in a special way that depends on the eigenvalues
of the final 2× 2 submatrix and still causes (2.12) to be satisfied.

The fact that the bound on ‖E‖ is linear in n for the SE90 factorization(2.11) and
(2.12) and quadratic in n for the GMW81 factorization(2.5) is a key distinction between
the methods. In practice, however, both methods usually achieve ‖E‖ far smaller than
these bounds, and ‖E‖ is often within a factor of 2 of −λ1(A), when λ1 < 0. In compar-
ative tests in SE90, the value of ‖E‖ for the SE90 factorization is almost always smaller
than for the GMW81, although the performance of both methods is quite good. The
performance of both algorithms is greatly aided by diagonal pivoting strategies employed
at each iteration, which do not affect the theoretical properties. The additional cost of
both factorizations is at most a small integer multiple of n2 operations, which is negligible
in comparison to the cost of the Cholesky factorization.

Recently, Cheng and Higham [2] have proposed a third type of modified Cholesky
factorization, based upon the bounded Bunch-Kaufman pivoting strategy [1]. This fac-
torization differs fundamentally from GMW81 and SE90 in that it adds a non-diagonal
matrix to A, by computing the symmetric indefinite factorization LBLT of a symmetric
permutation of A, where L is unit lower triangular and B is block diagonal with 1× 1 or
2× 2 blocks, and then perturbing B. This approach can be shown to perform well when
the condition number of L is not too large. However, as the authors state, the bound on
‖E‖ is weak if the condition number of LLT is large, and the worst-case upper bound is
exponential in n. It is too early to assess whether this version of the modified Cholesky
factorization will have a significant impact in the optimization community.

4

3 Motivating Example for Change to SE90 Algorithm

All of the known matrices for which ‖E‖SE is inordinately large appear to be of the form
A = B + C where B is a large positive semi-definite matrix (i.e. B = B1B

T
1 for some

B1 ∈ Rn×m, m < n) and C is an indefinite or negative definite matrix with ‖C‖ � ‖B‖.
(Any symmetric indefinite matrix whose largest positive eigenvalue is much larger in
magnitude than its most negative eigenvalue can be written in this form.) The potential
for a modified Cholesky factorization to have difficulty on matrices of this type is clear:
if Phase 2 begins at or before step m (the rank of B), then the size of δj is, according to
(2.10), likely to be proportional to ‖B‖ and therefore large. If, on the other hand, Phase
2 begins after step m, δj is likely to be proportional to ‖C‖, which is, by assumption,
much smaller than ‖B‖. Of course, the structure of A, including the value of m, is not
known to the algorithm.

The example in SE90 showing where that algorithm has difficulty,

A =




1, 890.3 −1, 705.6 −315.8 3, 000.3
−1, 705.6 1, 538.3 284.9 −2, 706.6
−315.8 284.9 52.5 −501.2
3, 000.3 −2, 706.6 −501.2 4, 760.8


 , (3.1)

is of this form with m = 1. Its eigenvalues are 8242.9, −0.248, −0.343, and −0.378. After
permuting the largest diagonal element to the (1,1) position, the values of ζ computed
from (2.6) are −0.265, −0.451,and −0.517, so that condition (2.7) fails and the algorithm
switches immediately to Phase 2 with K1 = 0. Using (2.10), δ1 = 1049.4 is added to the
first diagonal, and this is the ultimate value of ‖E‖. The large value of δ1 occurs because
the calculation of δ1 is based upon the Gerschgorin bounds for the large (in magnitude)
matrix A.

In contrast, with the GMW81 algorithm we have α1 = β2 = 4760.8 and ‖a1‖∞ =
3000.3. Thus, inequality (2.3) is satisfied with δ1 = 0, so that no modification is made
to the (1,1) diagonal. At the second iteration the algorithm adds 1.033 to the diagonal,
which turns out to be its maximum element of E for this problem. This small value of
δ2 results because it is based upon the elements of A2, and ‖A2‖ � ‖A‖.

To avoid modifying “too soon”, the remedy for the SE90 algorithm is to relax condi-
tion (2.7), the test for continuing Phase 1, to allow Phase 1 to continue even if Aj+1 will
have some small negative diagonal elements. In particular we show in Section 5 that, if
Phase 1 continues when there is a suitably positive pivot and

miniζi ≥ −µγ, where 0 < µ ≤ 1 (3.2)

and ζ is defined by (2.6), then the bounds (2.11) on element growth in Phase 1 are only
slightly worse; see Thereom 5.1. The advantage of using (3.2) rather than (2.7) is that
deferring modification may lead to a smaller ‖E‖ because the principal submatrix of the
later iteration may have smaller elements.

If the test (3.2) is used on example (3.1) with µ = 0.1 (or with any µ > 1.1× 10−4),
the first step of the unmodified Cholesky is allowed to proceed, so that δ1 = 0, and

5

A2 =



−0.451 −0.041 0.124
−0.041 −0.265 0.061

0.124 0.061 −0.517


 . (3.3)

Since all diagonal elements of A2 are negative, K1 = 1 and the procedure switches to
Phase2, giving E2,2 = 0.3666, E3,3 = E4,4 = 0.6649. That is, the ratio ‖E‖/(−λ1(A)) is
a very acceptable 1.76, as opposed to a poor 2778 for the SE90 algorithm (and 2.73 for
the GMW81 algorithm).

4 The Complete Revised Factorization Algorithm

A complete pseudo-code description of our revised modified Cholesky factorization is
given in Algorithm 4.1. The key change from the SE90 algorithm is the one discussed
in Section 3: the lookahead condition under which the algorithm switches from Phase
1 to Phase 2 is changed from min{(Aj+1)ii} ≤ τγ for some small positive τ (2.7) to
min{(Aj+1)ii} ≤ −µγ for some µ ≤ 1 (3.2). Our implementation uses µ = 0.1.

Several changes have been made to the algorithm in addition to checking (3.2) as part
of continuing in Phase 1:

1. Since we now allow small negative diagonal elements in Aj in Phase 1, we must
check that the pivot is positive. The test we insert to proceed with step j of Phase
1 is that the pivot element αj (the maximum diagonal element of Aj) must satisfy

αj ≥ τ̄γ, where τ̄ = ε
2
3 . (4.1)

This requirement ensures not only that the pivot is positive, but also that the new
algorithm retains a (mainly theoretically useful) bound on the condition number of
L analogous to that for the SE90 algorithm.

2. At step j of Phase 1, even if (4.1) is satisfied a branch is made to Phase 2 if

mini>jAii < −µαj, (4.2)

where µ is the quantity from (3.2). Note that, because (3.2) was satisfied at the
previous step of Phase 1, it must be true that mini>jAii ≥ −µγ. When (4.2) holds,
the remaining submatrix Aj tends to have at least one negative eigenvalue that is
comparable in magnitude to the other eigenvalues of Aj . In this case, the test (4.2)
leads to an earlier termination of Phase 1. Practical experience suggests that this
leads to a smaller ‖E‖; this is illustrated in Section 6.

3. A reduced lower bound, τ̄γ, is imposed on the modified diagonal Ajj + δj , where τ̄
is defined in (4.1). (In the SE90 algorithm, this lower bound is the larger value τγ.)
This change leads to two differences between the new algorithm and SE90 when
applied to badly conditioned “barely indefinite” matrices for which |λ1| � ‖A‖:
‖E‖ tends to be smaller with the new algorithm—only slightly larger than −λ1; but

the condition number of the modified matrix tends to be larger—roughly 1/τ̄ = ε−
2
3

6

rather than ε−
1
3 as in SE90. We expect that trading a larger condition number for

a smaller modification will be often desirable, for example when the Hessian at the
solution is ill-conditioned and the reduced bound allows quadratic convergence to
be retained.

4. Special logic is needed to treat the case when K1 = n− 1. (With SE90, step n− 1
proceeds only if step n can also be completed, so that this case does not occur.)

The only portions of our code for the modified Cholesky factorization that are not
reflected in Algorithm 4.1 are brief special cases to deal with matrices of dimension one,
and zero matrices.

7

Algorithm 4.1 – Revised Modified Cholesky Decomposition Algorithm

Given A ∈ <n×n symmetric (stored in lower triangle) and τ, τ̄ , µ (e.g., τ = (macheps)
1
3 ,

τ̄ = (macheps)
2
3 , µ = 0.1), find factorization LLT of A+E, E ≥ 0

phaseone := true
γ := max1≤i≤n{|Aii|}
j := 1

(*Phase one, A potentially positive-definite*)
While j ≤ n and phaseone = true do
if maxj≤i≤n{Aii} < τ̄γ or minj≤i≤n{Aii} < −µ(maxj≤i≤n{Aii})

then phaseone := false (*go to phase two*)
else

(*Pivot on maximum diagonal of remaining submatrix*)
i := index of maxj≤i≤n{Aii}
if i 6= j, switch rows and columns of i and j of A

if minj+1≤i≤n{Aii −A2
ij/Ajj} < −µγ

then phaseone := false (*go to phase two*)
else (* perform jth iteration of factorization*)

Ljj =
√
Ajj (*Ljj overwrites Ajj*)

For i := j + 1 to n do
Lij := Aij/Ljj (*Lij overwrites Aij *)
For k := j + 1 to i do

Aik = Aik − LijLkj
j := j + 1

(*end phase one*)

(*Phase two, A not positive-definite*)
if phaseone = false and j = n then

δ (* = Enn*) := −Ann+ max {τ(−Ann)/(1− τ), τ̄γ}
Ann := Ann + δ
Lnn =

√
Ann

if phaseone = false and j < n then
k := j − 1 (*k = number of iterations performed in phase one*)
(* Calculate lower Gerschgorin bounds of Ak+1*)

For i := k + 1 to n do
gi := Aii −

∑i−1
j=k+1 |Aij | −

∑n
j=i+1 |Aji|

8

(*Modified Cholesky Decomposition*)
For j := k + 1 to n− 2 do

(*Pivot on maximum lower Gerschgorin bound estimate*)
i := index of maxj≤i≤n{gi}
if i 6= j, switch rows and columns of i and j of A

(*Calculate Ejj and add to diagonal*)
normj :=

∑n
i=j+1 |Aij |

δ(* = Enn*) := max {0, −Ajj+ max{normj, τ̄γ}, δprev}
if δ > 0 then

Ajj := Ajj + δ
δprev := δ (* δprev will contain ‖E‖∞*)

(*Update Gerschgorin bound estimates*)
if Ajj 6= normj then

temp := 1− normj/Ajj
for i := j + 1 to n do

gi := gi + |Aij | ∗ temp
(*Perform jth iteration of factorization*)

same code as in phase one

(*Final 2× 2 submatrix *)

λlo, λhi := eigenvalues of

[
An−1,n−1 An,n−1

An,n−1 An,n

]

δ := max {0,−λlo+ max {τ(λhi − λlo)/(1 − τ), τ̄γ}, δprev}
if δ > 0 then

An−1,n−1 := An−1,n−1 + δ
An,n := An,n + δ
δprev := δ

Ln−1,n−1 :=
√
An−1,n−1 (*overwrites An−1,n−1 *)

Ln,n−1 := An,n−1/Ln−1,n−1 (*overwrites An,n−1 *)
Ln,n := (An,n − L2

n,n−1)1/2 (*overwrites An,n *)
(*End phase two*)

9

5 Upper Bound on ‖E‖
A key property of the SE90 factorization is the bound (2.7) on ‖E‖. In this section we
show that the relaxed lookahead strategy of the revised factorization causes only a small
growth in this bound. In particular, the term (γ + ξ) in (2.8) increases to (1 + µ)γ + ξ.
(Recall that µ ≤ 1; in our implementation µ = 0.1.) Thus the bound grows by at most
(1 + µ) and is still linear in n.

There are two main components in the proof of the bound on ‖E‖ in SE90. One is
the proof (SE90, Lemma 5.1.1 and Theorem 5.1.2) that each δj in Phase 2 is less than the
magnitude of the most negative Gerschgorin bound of the matrix Aj when the algorithm
enters Phase 2. This result is unaffected by the changes in our revised algorithm. The
second main component of the proof is the bound on the growth in the elements of A
during Phase 1 (SE90, Theorem 5.2.1). This result and proof are modified in a minor
way by the new lookahead strategy. For completeness, we include the new statement and
proof of this result below. The only new portions are the various terms µγ below, all of
which are absent for the results in SE90 about that algorithm. Note that Theorems 5.1
and 5.2 are true independent of whether pivoting is used at all or what pivoting strategy
is used.

Theorem 5.1 Let A ∈ Rn×n, and let γ = max{|Aii|, 1 ≤ i ≤ n}, ξ = max{|Aij |, 1 ≤
i < j ≤ n}. Suppose we perform the standard Cholesky decomposition as described in
Phase 1 of Algorithm 4.1 for k ≥ 1 iterations, yielding the principal submatrix Ak+1 ∈
R(n−k)×(n−k) (whose elements are denoted (Ak+1)ij , k + 1 ≤ i, j ≤ n}), and let γ̂ =

max{|(Ak+1)ii|, k + 1 ≤ i ≤ n} and ξ̂ = max{|(Ak+1)ij |, k + 1 ≤ i < j ≤ n}. If

(Ak+1)ii ≥ −µγ, k + 1 ≤ i ≤ n for some µ ≤ 1, then γ̂ ≤ γ and ξ̂ ≤ ξ + (1 + µ)γ.

Proof. Let A =

[
B CT

C F

]
, where B ∈ Rk×k, C ∈ R(n−k)×k, F ∈ R(n−k)×(n−k). After

k iterations of the Cholesky factorization, the first k columns of the Cholesky factor

L have been determined; denote them by

[
L̄
M

]
where L̄ ∈ Rk×k is triangular and

M ∈ R(n−k)×k. Then

B = L̄L̄T , C = ML̄T , F = MMT +Ak+1. (5.1)

Let mT
i denote the ith row of M . From (5.1), Fii = ‖mT

i ‖22 + (Ak+1)ii, k + 1 ≤ i ≤ n, so
that from Fii ≤ γ and (Ak+1)ii ≥ −µγ,

‖mT
i ‖22 ≤ (1 + µ)γ. (5.2)

Thus for any off-diagonal element of Ak+1, (5.1), (5.2), and the definition of ξ imply

|(Ak+1)ij | ≤ |Fij − (mT
i)(mT

j)T | ≤ ξ + (1 + µ)γ, (5.3)

which shows that ξ̂ ≤ ξ+(1+µ)γ. Also for all the diagonal elements of Ak+1, (Ak+1)ii ≥
−µγ, µ ≤ 1, (5.1), and the definition of γ imply

−µγ ≤ (Ak+1)ii ≤ Fii ≤ γ (5.4)

10

which shows that γ̂ ≤ γ and completes the proof.
�

The only other change in the revised algorithm that could affect the bound on ‖E‖
is the use of τ̄ where SE90 uses τ . Since τ̄ < τ , this affects the statement of the main
result but not the bound on ‖E‖. The new growth bound is given below; it is a minor
modification of Theorem 5.3.2 of SE90.

Theorem 5.2 Let A, γ, and ξ be defined as in Theorem 5.1, and suppose the modified
Cholesky factorization algorithm 4.1 is applied to A, resulting in the factorization LLT of
A+ E. If A is positive-definite and at each iteration L2

jj ≥ τ̄γ, then E = 0. Otherwise,
E is a nonnegative diagonal matrix, with

‖E‖ ≤ Gersch +
2τ

1− τ (Gersch + γ), (5.5)

where Gersch is the maximum of the negative of the lower Gerschgorin bounds { gi } of
Ak+1 that are calculated at the start of Phase two. If k = 0 then Gersch ≤ γ + (n− 1)ξ,
otherwise

Gersch ≤ (n− (k + 1))((1 + µ)γ + ξ). (5.6)

6 Computational Results

We have tested our revised factorization method, and the GMW81 and SE90 methods, on
the problems where the SE90 method had difficulties, as well as on the broad test set from
SE90 and a modification of one of these problem sets designed to be especially difficult
for our methods for reasons described below. This section summarizes and analyzes the
computational results.

As mentioned in Section 1, the modifications to the SE90 algorithm were motivated
in a large part by the matrices sent to us by David Gay, Michael Overton and Margaret
Wright. These matrices are condensed primal-dual matrices used in barrier methods for
constrained optimization. The 33 matrices sent to us were from problems where the over-
all optimization method using the SE90 factorization performed less well than the same
optimization method using other modified Cholesky factorizations, including GMW81.
For each problem, Gay, Overtion and Wright attempted to locate the first optimization
iteration where the algorithm using SE90 took a poorer step than the algorithm using
other modified Cholesky factorizations, and sent the Hessian matrix from this iteration.
It turned out that for two-thirds of these matrices, the SE90 algorithm was adding more
than GMW81, by as much as a factor of 102 to 107 in 8 cases. The problems are quite
small, with all but two having dimension between 6 and 15, and the remaining two having
dimension 26 and 55.

Table 6.1 summarizes the performance of the GMW81 and SE90 algorithms, and
our new Algorithm 4.1, on these 33 problems. The first column encodes the problem as
follows: the set (A is the initial set sent to us, B a second, later set sent to us after we
had made some but not all of the modifications reported in this paper), the dimension,
and the sequence number within this set and dimension. Columns 2-4 report the ratio of
‖E‖/(−λ1(A)) for each factorization (for problem B13 1, which is positive definite, this

11

column contains ‖E‖ instead). Columns 5-7 report the integer part of the base ten log
of the l2 condition number of A+E.

The results show that the new algorithm produces a reasonable value of ‖E‖ in all
cases. The ratio ‖E‖/(−λ1(A)) is less than 2.4 on all 33 problems, less than 2 on 31 of
the 33, and less than 1.4 for 24 of the 33 problems. The value of ‖E‖ is smaller than
that produced by the GMW81 algorithm on all 33 problems except the positive definite
matrix where both produce E = 0. The values of ‖E‖/(−λ1(A)) produced by GMW81
are generally in the range 2-5 for these problems. It is not clear, however, that this larger
value makes the GMW81 algorithm any less effective in an optimization context. The
value of ‖E‖/(−λ1(A)) for the new algorithm is essentially the same as for SE90 in 10
of the 33 cases and lower in the other 23.

The results also show that the condition numbers of A + E produced by the new
algorithm are considerably higher than for the SE90 algorithm, with 13 of the 33 as
high as 109 to 1011. As discussed in Section 4, this stems directly from the reduction in
the minimum allowable value of (Ajj + δj) from (macheps)1/3γ to (macheps)2/3γ. This
reduction, however, allows the algorithm to produce values of ‖E‖ hardly larger than
−λ1(A) on indefinite problems where −λ1(A) is very small compared to ‖A‖. The condi-
tion numbers produced by the GMW81 algorithm are almost always smaller than those
produced by the new algorithm, although the two largest condition numbers produced
by GMW81 on this test set, both roughly 1012, exceed the largest condition numbers
produced by the new algorithm. It should be noted that the original matrices in these
problems are themselves extremely ill-conditioned, and it is important for the modified
Cholesky to retain this property.

The change in performance of the new algorithm versus the SE90 algorithm on these
problems is directly related to its ability to defer adding to the diagonal until a later
iteration of the factorization. The new algorithm begins adding to the diagonal at the
same iteration as SE90 in 10 cases (all where SE90 already performed satisfactorily) and
later in the remaining 23 cases. In 8 cases it begins adding only one iteration later,
but even this can lead to ‖E‖ being orders of magnitude smaller as was shown by the
example in Section 3. In some cases the new algorithm begins adding 7-10 iterations
later than SE90, on problems of dimension no greater than 15. The GMW81 and the
new algorithm are very similar in when they begin adding to the diagonal: they begin
at the same iteration in 21 of the 33 cases, with GMW81 beginning earlier in 7 of the
remaining 12 and later in the other 5. The test (4.2) has an impact on 5 of these 33
problems (A6 3, A6 10, A6 12, A6 14, and B8 1), reducing ‖E‖/(−λ1(A)) from between
2 and 3.4 to 1.3 or less while also reducing the condition number of A + E by about 1
order of magnitude in comparison to the new algorithm without (4.2).

We had received one other report of difficulties from users of the SE90 algorithm,
from Wolfgang Hartmann of SAS concerning problems arising in ridge regression. In the

12

Table 6.1: Performance of existing and new methods on indefinite Hessian matrices
Problem ‖E‖/(−λ1(A)) Log10 Cond’n number of A+E

GMW81 SE90 revised SE90 GMW81 SE90 revised SE90

A6 1 1.36 3.57e+02 1.08 5 1 9

A6 2 4.84 1.18 1.18 3 5 7

A6 3 4.84 1.19 1.20 4 5 6

A6 4 2.50 1.27 1.27 5 5 8

A6 5 2.34 6.50 1.44 5 3 9

A6 6 1.69 2.94 1.20 8 5 10

A6 7 1.95 4.61 1.33 12 5 10

A6 8 1.95 6.61 1.13 8 5 10

A6 9 1.95 47.22 1.12 8 5 10

A6 10 5.88 5.39e+06 1.07 8 1 11

A6 11 2.33 7.25e+06 1.64 8 1 7

A6 12 4.84 1.19 1.20 4 5 6

A6 13 2.18 1.32 1.32 2 5 6

A6 14 4.84 1.19 1.20 4 5 6

A6 15 5.18 1.09 1.09 2 5 5

A6 16 2.18 1.32 1.32 2 5 6

A6 17 1.52 1.24 1.24 2 5 6

A13 1 2.25 8.93e+03 1.18 10 5 10

A13 2 2.59 1.50e+04 1.31 8 5 10

A15 1 2.42 2.54e+07 1.89 9 5 11

A15 2 2.37 3.89e+05 1.44 9 3 10

A15 3 1.95 2.18 1.50 6 5 10

B6 1 4.90 52.41 1.77 3 1 8

B6 2 4.49 45.86 2.31 2 1 7

B7 1 1.66 3.45 1.06 2 2 2

B7 2 1.93 11.00 1.30 2 1 7

B7 3 1.96 6.99 1.22 2 1 6

B7 4 1.92 5.32 1.18 2 1 6

B8 1 4.16 871.2 1.27 12 5 10

B13 1 0 27.14 (abs) 0 9 5 9

B13 2 1.76 7.84 1.29 7 5 10

B26 1 9.83 2.23 2.36 1 3 7

B55 1 3.50 1.71 1.71 1 5 6

13

example sent to us by Hartmann, n = 6, and the matrix




14.8253 −6.4243 7.8746 −1.2498 10.2733 10.2733
−6.4243 15.1024 −1.1155 −0.2761 −8.2117 −8.2117

7.8746 −1.1155 51.8519 −23.3482 12.5902 12.5902
−1.2498 −0.2761 −23.3482 22.7967 −9.8958 −9.8958
10.2733 −8.2117 12.5902 −9.8958 21.0656 21.0656
10.2733 −8.2117 12.5902 −9.8958 21.0656 21.0656




(6.1)

is positive semidefinite with one zero eigenvalue and five positive eigenvalues ranging
from 5 to 82. The positive semi-definite case can be considered a limiting case of the
class of problems that motivated our revision. The SE90 algorithm adds 7.50 to the
diagonal at iterations 3 through 6, which is undesirable. The GMW81 algorithm adds
1.67 × 10−14 at iteration 6 and produces a condition number of 4.9 × 1015 for A + E,
whereas our new algorithm adds 1.90 × 10−9 at iteration 6 and produces a condition
number of 8.7 × 1010. Both seem reasonable; the higher value of δ6 and lower condition
number from the new algorithm, compared to GMW81, stem directly from our tolerance
on the lowest allowable value of (Ajj + δj) discussed in Section 4.

We also reran all the test problems reported in SE90. These consist of 120 randomly
generated problems, 10 each of dimension 25, 50, and 75 for each of four eigenvalue
ranges: −1 to 1, −10−4 to −1, −1 to 104 and one negative eigenvalue, and −1 to 104

and three negative eigenvalues.
The behavior of the new algorithm on the first two sets of problems (eigenvalue

ranges [−1,1] and [−10−4, −1]) is identical to the SE90 algorithm for all problems. As
reported in SE90, for both of these classes of matrices, the SE90 algorithm (and the new
algorithm) produce values of ‖E‖/(−λ1(A)) quite close to 1 and considerably lower than
the GMW81 algorithm (by 1-2 orders of magnitude), while also producing much smaller
condition numbers than the GMW81 algorithm (by about 6 orders of magnitude).

The behavior of the factorization algorithms on the sets with eigenvalue range −1
to 104 are very similar to the behavior on the Gay/Overton/Wright problems that help
motivate this paper, since their characteristics are very similar. Indeed, the example in
Section 3, given in SE90, came from the [−1, 104] set with n = 25 and three negative
eigenvalues, and was the only bad case for the SE90 algorithm of the 120 test problems
in that paper. In this paper, we include the results for the one negative eigenvalue set
with n = 75 (Figures 6A,B), as they are typical but more marked than the n = 25 and
50 results. We also include a new set with n = 75, eigenvalue range −1 to 104, and nine
negative eigenvalues (Figures 6C-E), as it is a more extreme example of the problems
with the SE90 algorithm than the three negative eigenvalue sets.

The results on these two test sets again show that the values of ‖E‖/(−λ1(A)) pro-
duced by the new algorithm are very good, generally about 1.5 for the first set and 2
for the second. The values produced by the GMW81 algorithm are slightly higher but
also very good. The values produced by the SE90 algorithm on the second set are very
high (between 70 and 200) in four of the cases; for the first set they are satisfactory but
the new algorithm is better. As with some of the Gay/Overton/Wright problems, the
condition numbers produced by the new algorithm in these cases are around 1010, while
for the GMW81 algorithm they are around 105.

14

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5
6A. n=75,eig. range [−1,10000]

(|
|E

||)
 /

(−
la

m
bd

a(
1)

 o
f A

)

matrix
0 2 4 6 8 10

10
4

10
6

10
8

10
10

10
12

6B. n=75,eig. range [−1,10000]

C
on

di
tio

n
nu

m
be

r
of

 (
A

+
E

)

matrix

0 2 4 6 8 10
0

50

100

150

200
6C. n=75,eig. range [−1,10000],9 neg. eigs

(|
|E

||)
 /

(−
la

m
bd

a(
1)

 o
f A

)

matrix

2 4 6 8 10
0

2

4

6

8

10
6E. n=75,eig. range [−1,10000],9 neg. eigs

(|
|E

||)
 /

(−
la

m
bd

a(
1)

 o
f A

)

matrix

0 2 4 6 8 10
10

0

10
5

10
10

10
15

6D. n=75,eig. range [−1,10000],9 neg. eigs

C
on

di
tio

n
nu

m
be

r
of

 (
A

+
E

)

matrix

Figure 6: (A,B): Performance of existing and new methods on 10 matrices, each con-
taining one negative eigenvalue. (C-E): Performance of existing and new methods on 10
matrices, each containing nine negative eigenvalues.
Methods: GMW81 , SE90 −−−, revised SE90 + + + .

15

In summary, these results indicate that the modifications introduced in this paper
have removed the known difficulties with the SE90 algorithm. The new algorithm pro-
duces values of ‖E‖/(−λ1(A)) in the range 1 to 2.5 for all test matrices considered, in-
cluding all that are problematic for the SE90 algorithm. The values of ‖E‖/(−λ1(A)) are
virtually always lower than those produced by the GMW81 algorithm, sometimes consid-
erably so. The modifications result in condition numbers of A+E of order (macheps)−2/3

in cases when A is barely indefinite (0 < −λ1(A)� ‖A‖). The matrices produced by the
GMW81 algorithm generally are better conditioned than those produced by the new al-
gorithm in these cases, although the highest condition numbers produced by the GMW81
algorithm are higher than for the new algorithm. The new algorithm, like SE90, produces
very well conditioned matrices in the other types of test cases.

In our opinion, these test results indicate good performance for both the GMW81
algorithm and the new algorithm. Which is used in an optimization context may de-
pend upon the context or upon factors other than those considered in this paper. For
example, SE90 has proven useful for large scale codes, including multifrontal approaches,
where one does not want to process the full matrix A at once [4]. Here the fact that
GMW81 requires a preprocessing step that requires all of A (to compute ξ, which is not
used in SE90 or the new algorithm) is the critical difference. (Pivoting is not used in
these implementations; recall that this does not weaken the theoretical properties of our
algorithm.) In a different context, the SE90 algorithm has led to very good performance
when used as a preconditioner in conjugate gradient codes in the LANCELOT software
package [3]; it has also been used in this manner by [11]. Additionally, it has proven to
be useful in ensuring that the Winget factors within element-by-element preconditioners
are definite [6], and has also been implemented in a block version of the factorization [5].
Finally, the results of this paper show that the new algorithm may be a useful way to
obtain rough estimates of −λ1(A) in cases where this is useful, for example some trust
region methods. For general optimization applications, both factorizations are likely to
continue to be used; the lower a priori bound on ‖E‖ for GMW81 and the new algorithm
may not be a determining factor since the results of SE90 and this section continue to
show that both algorithms reliably produce values of ‖E‖ that are far lower than these
bounds in practice. If our test problems are a good indication, however, the apparently
greater robustness of our new method in not producing poor values of ‖E‖ or excessively
high condition numbers of A+E may be an asset.

Acknowledgements. The authors thank David Gay, Michael Overton and Margaret
Wright for alerting them to the difficulties of our original modified Cholesky algorithm on
their problems from primal-dual methods and for supplying sample test problems. The
authors also thank Margaret Wright for many helpful, detailed suggestions regarding the
presentation of this paper.

References

[1] C. Ashcraft, R. G. Grimes, and J. G. Lewis, Accurate symmetric indefinite

16

linear equation solvers, SIAM J. Matrix Anal. Appl., 20 (1998) pp. 513–561.

[2] S. H. Cheng, and N. J. Higham, A Modified Cholesky Algorithm Based on a Sym-
metric Indefinite Factorization, SIAM J. Matrix Anal. Appl., 19 (1998) pp. 1097–
1110.

[3] A. R. Conn, N. I. M. Gould and P. L. Toint, Numerical experiments with
the LANCELOT package (Release A) for large-scale nonlinear optimization, Math.
Programming, 73 (1996), pp. 73–110.

[4] A. R. Conn, N. I. M. Gould and P. L. Toint, LANCELOT: a Fortran package
for large-scale nonlinear optimization (Release A), Springer Series in Computational
Mathematics, 17, Springer Verlag, Heidelberg, Berlin, New York, 1992.

[5] M. J Daydé, A Block Version of the Eskow-Schnabel Modified Cholesky Factoriza-
tion, Rapport Technique ENSEEIHT-IRIT RT/APO/95/8, (1995).

[6] M. J Daydé, J.-Y. L’Excellent, and N. I. M. Gould Element-by-Element
Preconditioners for Large Partially Separable Optimization Problems, SIAM J. Sci.
Statist. Comput., 18 (1997) pp. 1767–1787.

[7] J. E. Dennis, and R. B. Schnabel, Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983,
reprinted by SIAM, Philadelphia, PA, 1996.

[8] D. M. Gay, M. L. Overton and M. H. Wright, A primal-dual interior point
method for nonconvex nonlinear programming in Advances in Nonlinear Prgram-
ming (Y. Yuan, ed), Kluwer Academic Publishers, Dordrecht, 1998, pp. 31–36.

[9] P. E. Gill, and W. Murray, Newton-type methods for unconstrained and linearly
constrained optimization, Math. Programming, 28 (1974), pp. 311–350.

[10] P. E. Gill, W. Murray, and M. H.Wright, Practical Optimization, Academic
Press, London, 1981.

[11] T. Schlick Modified Cholesky factorizations for sparse preconditioners SIAM J.
Sci. Comput., 14, (1993), pp. 424–445.

[12] R. B. Schnabel, and E. Eskow, A New modified Cholesky factorization, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 1136–1158.

17

