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CHAPTER 1
ABOUT THIS MANUAL

The 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 245470) is part of a three-volume set that describes the architecture and
programming environment of all IA-32 Intel® Architecture processors. The other two volumes
in this set are:

® The IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference (Order Number 245471).

® The IA-32 Intel Architecture Software Developer’'s Manual, Volume 3. System
Programming Guide (Order Number 245472).

ThelA-32 Intel Architecture Software Devel oper’s Manual, Volume 1, describes the basic archi-
tecture and programming environment of an | A-32 processor; the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2, describes the instruction set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The |A-32 Intel Architecture
Software Developer’'s Manual, Volume 3 describes the operating-system support environment of
an | A-32 processor, including memory management, protection, task management, interrupt and
exception handling, and system management mode. It also provides | A-32 processor compati-
bility information. Thisvolumeisaimed at operating-system and BIOS designers and program-
mers.

1.1. 1A-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes information pertaining primarily to the most recent 1A-32 processors,
which include the Pentium® processors, the P6 family processors, the Pentium® 4 processors,
the Intel® Xeon™ processors. The P6 family processors are those | A-32 processors based on the
P6 family micro-architecture, which include the Pentium® Pro, Pentium® 11, and Pentium® 11|
processors. The Pentium 4 and Intel X eon processors are based on the Intel® NetBurst™ micro-
architecture.
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1.2. OVERVIEW OF THE IA-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 1: BASIC
ARCHITECTURE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of al three volumes of the 1A-32 Intel
Architecture Software Devel oper’s Manual. It also describes the notational conventionsin these
manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Introduction to the | A-32 Architecture. Introduces the 1A-32 architecture and
the families of Intel processors that are based on this architecture. It also gives an overview of
the common features found in these processors and brief history of the I1A-32 architecture.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization
and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the
processor; provides an overview of real numbers and floating-point formats and of floating-
point exceptions.

Chapter 5 — Instruction Set Summary. Lists the al the 1A-32 architecture instructions,
divided into technology groups (general-purpose, x87 FPU, MMX™ technology, Streaming
SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), and system instructions).
Within these groups, the instructions are presented in functionally related groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack
and the mechanisms provided for making procedure cals and for servicing interrupts and
exceptions.

Chapter 7 — Programming With the General-Purpose I nstructions. Describes the basic
load and store, program control, arithmetic, and string instructions that operate on basic data
types and on the general-purpose and segment registers; describes the system instructions that
are executed in protected mode.

Chapter 8 — Programming With the x87 Floating Point Unit. Describes the x87 floating-
point unit (FPU), including the floating-point registers and data types; gives an overview of the
floating-point instruction set; and describes the processor’s fl oati ng-point exception conditions.

Chapter 9 — Programming with Intel MM X Technology. Describes the Intel MMX tech-
nology, including MM X registersand datatypes, and gives an overview of the MM X instruction
Set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes the SSE
extensions, including the XMM registers, the MXCSR register, and the packed single-precision
floating-point data types; gives an overview of the SSE instruction set; and gives guidelines for
writing code that accesses the SSE extensions.
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Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes the
SSE2 extensions, including XMM registers and the packed double-precision floating-point data
types; gives an overview of the SSE2 instruction set; and gives guidelines for writing code that
accesses the SSE2 extensions. This chapter also describes the SIMD floating-point exceptions
that can be generated with SSE and SSE2 instructions, and it gives general guidelinesfor incor-
porating support for the SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Input/Output. Describes the processor’s 1/0 mechanism, including I/O port
addressing, the I/O instructions, and the 1/0O protection mechanism.

Chapter 13— Processor | dentification and Feature Deter mination. Describes how to deter-
mine the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-Refer ence. Summarizes how the 1A-32 instructions affect the
flagsin the EFLAGS register.

Appendix B— EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by the x87 FPU floating-point and the SSE and SSE2 SIMD floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to
design and write MS-DOS* compatible exception handling facilities for FPU exceptions,
including both software and hardware requirements and assembly-language code examples.
This appendix also describes general techniques for writing robust FPU exception handlers.

Appendix E — Guidédines for Writing SIMD Floating-Point Exception Handlers. Gives
guidelines for writing exception handlers to handle exceptions generated by the SSE and SSE2
SIMD floating-point instructions.

1.3. OVERVIEW OF THE IA-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 2:
INSTRUCTION SET REFERENCE

The contents of the 1A-32 Intel Architecture Software Developer’s Manual, Volume 2 are as
follows:

Chapter 1 — About This Manual. Gives an overview of al three volumes of the |A-32 Soft-
ware Developer’s Manual. It al so describes the notational conventionsin these manualsand lists
related Intel manuals and documentation of interest to programmers and hardware designers.

Chapter 2— Instruction Format. Describes the machine-level instruction format used for all
IA-32 instructions and gives the allowable encodings of prefixes, the operand-identifier byte
(ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement and
immediate bytes.
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Chapter 3 — Instruction Set Reference. Describes each of the 1A-32 instructions in detail,
including an algorithmic description of operations, the effect on flags, the effect of operand- and
address-size attributes, and the exceptions that may be generated. The instructions are arranged
in alphabetical order. The general-purpose, x87 FPU, MM X, SSE, SSE2, and system instruc-
tions are included in this chapter.

Appendix A — Opcode Map. Gives an opcode map for the | A-32 instruction set.

Appendix B — Instruction Formats and Encodings. Givesthe binary encoding of each form
of each IA-32 instruction.

Appendix C — Intel C/C++ Compiler Intrinsicsand Functional Equivalents. Liststhe Intel
C/C++ compiler intrinsics and their assembly code equivalents for each of the IA-32 MMX,
SSE, and SSE2 instructions.

1.4. OVERVIEW OF THE IA-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 3: SYSTEM
PROGRAMMING GUIDE

The contents of the 1A-32 Intel Architecture Software Developer’s Manual, Volume 3 are as
follows:

Chapter 1 — About This Manual. Gives an overview of al three volumes of the 1A-32 Intel
Architecture Software Devel oper’s Manual. It also describes the notational conventionsin these
manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation of an |A-32
processor and the mechanisms provided in the 1A-32 architecture to support operating systems
and executives, including the system-oriented registers and data structures and the system-
oriented instructions. The steps necessary for switching between real-address and protected
modes are also identified.

Chapter 3— Protected-M ode M emory Management. Describesthe data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a“flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection provided in
the |A-32 architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5— Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the | A-32 architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each 1A-
32 exception is given at the end of this chapter.

Chapter 6 — Task Management. Describes the mechanisms the | A-32 architecture provides
to support multitasking and inter-task protection.
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Chapter 7 — Multiple-Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and Hyper-Threading tech-
nology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes the
programming interface to the local APIC and gives an overview of the interface between the
local APIC and the |/O APIC.

Chapter 9 — Processor Management and Initialization. Defines the state of an 1A-32
processor after reset initialization. This chapter also explains how to set up an | A-32 processor
for real-address mode operation and protected- mode operation, and how to switch between
modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the 1A-32 architecture. This chapter also describes the
memory type rangeregisters (MTRRS) and how they can be used to map memory types of phys-
ical memory. Information on using the new cache control and memory streaming instructions
introduced with the Pentium Ill, Pentium 4, and Intel Xeon processorsis also given.

Chapter 11 — Intel MM X™ Technology System Programming. Describes those aspects of
the Intel MMX technology that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system
environments. The Intel MM X technology was introduced into the | A-32 architecture with the
Pentium processor.

Chapter 12 — SSE and SSE2 System Programming. Describes those aspects of SSE and
SSE2 extensions that must be handled and considered at the system programming level,
including task switching, exception handling, and compatibility with existing system environ-
ments.

Chapter 13 — System M anagement. Describes the | A-32 architecture's system management
mode (SMM) and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check architecture.

Chapter 15 — Debugging and Performance Monitoring. Describes the debugging registers
and other debug mechanism provided in the | A-32 architecture. This chapter also describes the
time-stamp counter and the performance-monitoring counters.

Chapter 16 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the | A-
32 architecture.

Chapter 17 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 18 — 1A-32 Architecture Compatibility. Describes architectura compatibility
among the 1A-32 processors, which include the Intel 286, Intel386™, Intel486™, Pentium, P6
family, Pentium 4, and Intel Xeon processors. The P6 family includes the Pentium Pro, Pentium
[, and Pentium Il processors. The differences among the 32-bit 1A-32 processors are aso
described throughout the three volumes of the | A-32 Software Devel oper’s Manual, as relevant
to particular features of the architecture. This chapter provides a collection of al the relevant
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compatibility information for all 1A-32 processors and a so describes the basic differences with
respect to the 16-hit | A-32 processors (the Intel 8086 and Intel 286 processors).

Appendix A — Performance-Monitoring Events. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events. Both Pentium
processor and P6 family processor events are described.

Appendix B — Model Specific Registers (M SRs). Lists the MSRs available in the Pentium
processors, the P6 family processors, and the Pentium 4 and Intel Xeon processors and describes
their functions.

Appendix C — MP Initialization For P6 Family Processor s. Gives an example of how to use
of the MP protocol to boot P6 family processorsin n MP system.

Appendix D — Programming the LINTO and LINT1 Inputs. Gives an example of how to
program the LINTO and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Givesan example of how to inter-
pret the error codes for a machine-check error that occurred on a P6 family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for messages
transmitted on the APIC bus for P6 family and Pentium processors.

1.5. NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.5.1. Bitand Byte Order

Inillustrations of data structuresin memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of aset bit isequal to two raised to the power of the bit position. |A-32 proces-
sorsare “little endian” machines; this means the bytes of aword are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.
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Data Structure

Highest 5, 24 23 16 15 8 7 0 <« Bit offset

Address

28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 Byte0O | O

A

Byte Offset

Lowest
Address

Figure 1-1. Bit and Byte Order

1.5.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked asreserved, it is essential for compatibility with future processors that software
treat these bits as having afuture, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

Do not depend on the states of any reserved bits when testing the values of registers which

contain such bits. Mask out the reserved bits before testing.

Do not depend on the states of any reserved bits when storing to memory or to aregister.

Do not depend on the ability to retain information written into any reserved hits.

When loading a register, always load the reserved hits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in 1A-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved val ues risk incompat-

ibility with future processors.
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1.5.3. Instruction Operands

When instructions are represented symbolically, a subset of the 1A-32 assembly language is
used. In this subset, an instruction has the following format,

label: mnemonic argumentl, argument2, argument3

where:
®* Alabel isanidentifier whichis followed by acolon.

® A mnemonic is areserved name for a class of instruction opcodes which have the same
function.

® The operands argument1, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG MOV EAX, SUBTOTAL
In this example, LOADREG isalabel, MOV isthe mnemonic identifier of an opcode, EAX is

the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.5.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
*t:0,1,23456,7,89A,B,C,D,E, andF.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.5.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes memory. The range of memory that can be addressed is called an
address space.
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The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresseswould alwaysrefer to the stack space. Thefollowing
notation is used to specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS: FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.
CS: EI P

1.5.6. Exceptions

An exceptionisan event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)
This example refers to a page-fault exception under conditions where an error code naming a
type of fault isreported. Under some conditions, exceptions which produce error codes may not

be able to report an accurate code. In this case, the error code is zero, as shown below for a
general -protection exception.

#GP( 0)

See Chapter 5, Interrupt and Exception Handling, in the 1A-32 Intel Architecture Software
Developer’s Manual, Volume 3, for alist of exception mnemonics and their descriptions.

1.6. RELATED LITERATURE
Literature related to 1A-32 processorsis listed on-line at the following Intel web site:

http://developer.intel.com/design/processors/

Some of the documents listed at this web site can be viewed on-line; others can be ordered on-
line. The literature available is listed by Intel processor and then by the following literature
types:. applications notes, data sheets, manual s, papers, and specification updates. Thefollowing
literature may be of interest:

® Data Sheet for aparticular Intel 1A-32 processor.
® Specification Update for a particular Intel 1A-32 processor.
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1-10

AP-485, Intel Processor |dentification and the CPUID Instruction, Order Number 241618.

AP-578, Software and Hardware Considerations for FPU Exception Handlers for Intel
Architecture Processors, Order Number 243291,

Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization Reference Manual, Order
Number 248966.
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CHAPTER 2
INTRODUCTION TO THE 1A-32
INTEL ARCHITECTURE

The exponential growth of computing power and personal computer ownership made the
computer one of the most important forces that shaped business and society in the second half
of the twentieth century. Furthermore, computers are expected to continue to play crucial roles
in the growth of technology, business, and other new arenasin the future, because new applica-
tions (such as, the Internet, digital media, and genetics research) are strongly dependent on ever
increasing computing power for their growth.

The 1A-32 Intel Architecture has been at the forefront of the computer revolution and is today
clearly the preferred computer architecture, as measured by the number of computersin use and
total computing power availablein the world. Two of the major factors that may be the cause of
the popularity of 1A-32 architecture are: compatibility of software written to run on 1A-32
processors, and the fact that each generation of 1A-32 processors deliver significantly higher
performance than the previous generation. This chapter provides a brief historical summary of
the 1A-32 architecture, from its origin in the Intel 8086 processor to the latest version imple-
mented in the Pentium 4 and Intel Xeon processors.

2.1. BRIEF HISTORY OF THE IA-32 ARCHITECTURE

The developments leading to the latest version of the |A-32 architecture can be traced back to
the Intel 8085 and 8080 microprocessors and to the Intel 4004 microprocessor (the first micro-
processor, designed by Intel in 1969). Before the |A-32 architecture family introduced 32-bit
processors, it was preceded by 16-bit processors including the 8086 processor, and quickly
followed by a more cost-effective version, the 8088. From a historic perspective, the 1A-32
architecture contains both 16-bit processors and 32-bit processors. At present, the 32-bit |A-32
architectureisavery popular computer architecture for many operating systemsand avery wide
range of applications.

One of the most important achievements of the 1A-32 architecture is that the object code
programs created for these processors starting in 1978 still execute on the latest processor in the
| A-32 architecture family.

The 8086 has 16-hit registers and a 16-bit external data bus, with 20-bit addressing giving a 1-
MByte address space. The 8088 is identical except for a smaller external data bus of 8 hits.
These processors introduced segmentation to the 1A-32 architecture. With segmentation, a 16-
bit segment register contains a pointer to a memory segment of up to 64 KBytesin size. Using
four segment registers at atime, the 8086/8088 processors are able to address up to 256 KBytes
without switching between segments. The 20-bit addresses that can be formed using a segment
register pointer and an additional 16-bit pointer provide atotal address range of 1 MByte.
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The Intel 286 processor introduced the protected mode operation into the 1A-32 architecture.
This new mode of operation uses the segment register contents as selectors or pointers into
descriptor tables. The descriptors provide 24-bit base addresses, allowing a maximum physical
memory size of up to 16 MBytes, support for virtual memory management on a segment swap-
ping basis, and various protection mechanisms. These protection mechanisms include segment
limit checking, read-only and execute-only segment options, and up to four privilege levels to
protect operating system code (in several subdivisions, if desired) from application or user
programs. In addition, hardware task switching and local descriptor tables allow the operating
system to protect application or user programs from each other.

The Intel 386 processor was the first 32-bit processor in the |A-32 architecture family. It intro-
duced 32-bit registersinto the architecture, for use both to hold operands and for addressing. The
lower half of each 32-bit register retained the properties of the 16-bit registers of the two earlier
generations, to provide complete backward compatibility. A new virtual-8086 mode was
provided to yield greater efficiency when executing programs created for the 8086 and 8088
processors on the new 32-bit processors. The Intel 386 processor has a 32-hit address bus, and
can support up to 4 GBytes of physical memory. The 32-bit architecture provides|ogical address
space for each software process. The 32-bit architecture supports both a segmented-memory
model and a“flat”! memory model. In the “flat” memory model, the segment registers point to
the same address, and all 4 GBytes addressable space within each segment are accessible to the
software programmer. The original 16-bit instructions were enhanced with new 32-bit operand
and addressing forms, and completely new instructions were provided, including those for bit
mani pulation. The Intel 386 processor also introduced paging into the 1A-32 architecture, with
the fixed 4-KByte page size providing a method for virtual memory management that was
significantly superior compared to using segments for the purpose. This paging system was
much more efficient for operating systems, and completely transparent to the applications,
without significant sacrifice in execution speed. The ability to support 4 GBytes of virtual
address space, memory protection, together with paging support, enabled the | A-32 architecture
to be a popular choice for advanced operating systems and wide variety of applications.

The | A-32 architecture has been and is committed to the task of maintaining backward compat-
ibility at the object code level to preserve Intel customers' large investment in software. At the
sametime, in each generation of the architecture, the latest most effective micro-architecture and
silicon fabrication technologies have been used to produce high-performance processors. In
each generation of 1A-32 processors, Intel has conceived and incorporated increasingly sophis-
ticated techniques into its microarchitecture in pursuit of ever faster computers. Various forms
of parallel processing have been the most performance enhancing of these techniques, and the
Intel386 processor was the first 1A-32 architecture processor to include a number of parallel
stages. These six stages are the bus interface unit (accesses memory and I/O for the other units),
the code prefetch unit (receives object code from the bus unit and putsit into a 16-byte queue),
the instruction decode unit (decodes object code from the prefetch unit into microcode), the
execution unit (executes the microcode instructions), the segment unit (trandates logical
addresses to linear addresses and does protection checks), and the paging unit (translates linear
addresses to physical addresses, does page based protection checks, and contains a cache with
information for up to 32 most recently accessed pages).

1. Requires only one 32-bit address component to access anywhere in the linear address space.
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The Intel486 processor added more parallel execution capability by expanding the Intel386
processor’s instruction decode and execution units into five pipelined stages, where each stage
(when needed) operates in parallel with the others on up to five instructions in different stages
of execution. Each stage can do its work on one instruction in one clock, and so the Intel486
processor can execute as rapidly as one instruction per clock cycle. An 8-KByte on-chip first-
level cache was added to the Intel486 processor to greatly increase the percent of instructions
that could execute at the scalar rate of one per clock: memory access instructions were now
included if the operand wasin the first-level cache. The Intel486 processor also for thefirst time
integrated the x87 FPU onto the processor and added new pins, bits and instructions to support
more complex and powerful systems (second-level cache support and multiprocessor support).

Late in the Intel 486 processor generation, Intel incorporated features designed to support power
savings and other system management capabilities into the 1 A-32 architecture mainstream with
the Intel486 SL Enhanced processors. These features were developed in the Intel386 SL and
Intel486 SL processors, which were specialized for the rapidly growing battery-operated note-
book PC market segment. The features include the new System Management Maode, triggered
by its own dedicated interrupt pin, which allows complex system management features (such as
power management of various subsystems within the PC), to be added to a system transparently
to the main operating system and all applications. The Stop Clock and Auto Halt Powerdown
features allow the processor itself to execute at areduced clock rate to save power, or to be shut
down (with state preserved) to save even more power.

The Intel Pentium processor added a second execution pipeline to achieve superscalar perfor-
mance (two pipelines, known as u and v, together can execute two instructions per clock). The
on-chip first-level cache was also doubled, with 8 KBytes devoted to code, and another 8
KBytes devoted to data. The data cache uses the MESI protocol to support the more efficient
write-back cache, as well as the write-through cache that is used by the Intel486 processor.
Branch prediction with an on-chip branch table was added to increase performance in looping
congtructs. Extensions were added to make the virtual-8086 mode more efficient, and to allow
for 4-MByte aswell as4-KByte pages. The main registersare still 32 bits, but internal data paths
of 128 and 256 bits were added to speed internal data transfers, and the burstable external data
bus has been increased to 64 bits. The Advanced Programmable Interrupt Controller (APIC) was
added to support systems with multiple Pentium processors, and new pins and a special mode
(dual processing) was designed in to support glueless two processor systems.

The last processor in the Pentium family (the Pentium Processor with MMX™ technol ogy)
introduced the Intel MMX technology to the |A-32 architecture. The Intel MM X technology
uses the single-instruction, multiple-data (SIMD) execution model to perform parallel compu-
tations on packed integer data contained in the 64-bit MM X registers. This technology greatly
enhanced the performance of the I A-32 processors in advanced media, image processing, and
data compression applications.

In 1995, Intel introduced the P6 family of processors. This processor family was based on anew
superscalar micro-architecture that established new performance standards. One of the primary
goals in the design of the P6 family micro-architecture was to exceed the performance of the
Pentium processor significantly while still using the same 0.6-micrometer, four-layer, metal
BICMOS manufacturing process. Using the same manufacturing process as the Pentium
processor meant that performance gains could only be achieved through substantial advancesin
the micro-architecture.
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The Intel Pentium Pro processor was the first processor based on the P6 micro-architecture.
Subsequent members of the P6 processor family are: the Intel Pentium 11, Intel Pentium® 11
Xeon™, Intel Celeron®, Intel Pentium 111, and Intel Pentium® 111 Xeon™ processors. A brief
description of each of these processor members follows.

The Pentium Pro processor isthree-way superscal ar, permitting it to execute up to three instruc-
tions per clock cycle. It also introduced the concept of dynamic execution (micro-dataflow anal-
ysis, out-of-order execution, superior branch prediction, and speculative execution) in a
superscalar implementation. Three instruction decode units worked in parallel to decode object
code into smaller operations called micro-ops (micro-architecture op-codes). These micro-ops
are fed into an instruction pool, and (when interdependencies permit) can be executed out of
order by thefive parallel execution units (two integer, two FPU and one memory interface unit).
The Retirement Unit retires completed micro-opsin their original program order, taking account
of any branches. The power of the Pentium Pro processor was further enhanced by its caches: it
had the same two on-chip 8-KByte 1st-L evel caches as did the Pentium processor, and al so had
a 256-KByte 2nd-Level cache that was in the same package as, and closely coupled to, the
processor, using a dedicated 64-bit backside (cache-bus) full clock speed bus. The 1st-Level
cache was dual-ported, the 2nd-Level cache supported up to 4 concurrent accesses, and the 64-
bit external data bus was transaction-oriented, meaning that each access was handled as a sepa-
rate request and response, with numerous requests allowed while awaiting a response. These
parallel features for data access enhanced the performance of the processor by providing anon-
blocking architecturein which the processor’s parallel execution units can be better utilized. The
Pentium Pro processor also has an expanded 36-bit address bus, giving a maximum physical
address space of 64 GBytes.

The Intel Pentium 11 processor added the Intel MM X technology to the P6 family processors
along with new packaging and several hardware enhancements. The processor core is packaged
in the single edge contact cartridge (SECC), enabling ease of design and flexible motherboard
architecture. The first-level data and instruction caches are enlarged to 16 KBytes each, and
second-level cache sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A “half clock
speed” backside bus that connects the second-level cache to the processor. Multiple |ow-power
states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep are supported to conserve power
when idling.

The Pentium 11 Xeon processor combined several premium characteristics of previous genera-
tion of Intel processors such as 4-way, 8-way (and up) scalability a 2-MByte second-level cache
running on a “full-clock speed” backside bus to meet the demands of mid-range and higher
performance servers and workstations.

The Intel Celeron processor family focused the 1A-32 architecture on the desktop or value PC
market segment. It offers features such as an integrated 128 KByte of second-level cache, a
plastic pin grid array (PP.GA.) form factor to lower system design cost.

The Pentium Il processor introduced the Streaming SIMD Extensions (SSE) into the |A-32
architecture. The SSE extensions extend the SIMD execution model introduced with the Intel
MM X technology with anew set of 128-bit registersand the ability to perform SIMD operations
on packed single-precision floating-point values.

The Pentium 111 Xeon processor extended the performance levels of the |A-32 processors with
the enhancement of a full-speed, on-die, Advanced Transfer Cache.
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2.2. THE INTEL PENTIUM 4 PROCESSOR

The Intel Pentium 4 processor is the first 1A-32 processor based on the Intel NetBurst micro-
architecture. The Intel NetBurst micro-architecture is a new 32-bit micro-architecture that
allows processors to operate at significantly higher clock speeds and performance levels than
previous 1A-32 processors. The Intel Pentium 4 processor has the following advanced features:

®* First implementation of the Intel NetBurst micro-architecture (see Section 2.6., The Intel
NetBurst Micro-Architecture for a detailed description).

— Rapid Execution Engine.

— Hyper Pipelined Technology.

— Advanced Dynamic Execution.

— Innovative new cache subsystem.
® Streaming SIMD Extensions 2 (SSE2):

— Extends the Intel MMX Technology and the SSE extensions with 144 new instruc-
tions, which include support for:

e 128-bit SIMD integer arithmetic operations.
e 128-bit SIMD double precision floating point operations.
¢ Cache and memory management operations.

— Further enhances and accelerates video, speech, encryption, image and photo
processing.

® 400 MHz Intel NetBurst micro-architecture system bus.

— Provides 3.2 GBytes per second throughput (3 times faster than the Pentium l1lI
processor).

— Quad-pumped 100MHz scalable bus clock to achieve 400 MHz effective speed.
— Split-transaction, pipelined.
— 128-byte lines with 64-byte accesses.

® Compatible with existing applications and operating systems that are written to run on
Intel | A-32 architecture processors.

2.3. THE INTEL XEON PROCESSOR

The Intel Xeon processor isthe latest | A-32 processor based on the Intel NetBurst micro-archi-
tecture (see Section 2.6., The Intel NetBurst Micro-Architecture). This family of 1A-32 proces-
sorsis designed for use in server systems and high-performance workstations. The Intel Xeon
processor has the same advanced features as are described for the Pentium 4 processor (see
Section 2.2., The Intel Pentium 4 Processor).
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2.3.1. Streaming SIMD Extensions 2 (SSE2) Technology

The Intel Pentium 4 processor introduced the SSE2 extensions, which offer several enhance-
ments to the Intel MMX technology and SSE extensions. These enhancements include opera-
tions on new packed data formats and increased SIMD computational performance using 128-
bit wide registers for integer SIMD operation. A packed double-precision floating-point data
type is introduced along with several packed 128-bit integer data types. These new data types
allow packed double-precision and single-precision fl oating-point and packed integer computa-
tionsto be performed in the XMM registers.

New SIMD instructions introduced in the 1A-32 architecture include floating-point SIMD
instructions, integer SIMD instructions, conversion between SIMD floating-point data and
SIMD integer data, and conversion of packed databetween XMM registersand MM X registers.
New floating-point SIMD instructions allow computations to be performed on packed double-
precision floating-point val ues (two double-precision values per XMM register). The computa-
tion of SIMD floating-point instructions and the single-precision and doubl e-precision floating-
point formats are compatible with IEEE Standard 754 for Binary Floating-Point Arithmetic.
New integer SIMD instructions provide flexible and higher dynamic range computational power
by supporting arithmetic operations on packed doubleword and quadword data as well as other
operations on packed byte, word, doubleword, quadword and double quadword data.

In addition to new 128-bit SIMD instructions described in the previous paragraph, there are 128-
bit enhancement to 68 integer SIMD instructions, which operated solely on 64-bit MM X regis-
ters in the Pentium Il and Pentium 11l processors. Those 64-bit integer SIMD instructions are
enhanced to support operation on 128-bit XMM registers in the Pentium 4 processor. These
enhanced integer SIMD instructions allow software developers to deliver new performance
levels when implementing floating-point and integer algorithms, and to have maximum flexi-
bility by writing SIMD code with either XMM registers or MM X registers.

Thelntel Pentium 4 processor offers new featuresthat enabl e software devel opersto deliver new
levels of performance in multimedia applications ranging from 3-D graphics, video
decoding/encoding to speech recognition. The new packed double-precision floating-point
instructions enhance performance for applications that require greater range and precision,
including scientific and engineering applications and advanced 3-D geometry techniques, such
asray tracing.

To speed up processing and improve cache usage, the SSE2 extensions offers several new
instructions that allow application programmers to control the cacheability of data. These
instructions provide the ability to stream datain and out of the registers without disrupting the
caches and the ahility to prefetch data before it is actually used.

The new architectural features introduced with the SSE2 extensions do not require new oper-
ating system support. This is because the SSE2 extensions do not introduce new architectural
states, and the FXSAVE/FXRSTOR instructions, which supports the SSE extensions, also
supports SSE2 extensions and are sufficient for saving and restoring the state of the XMM regis-
ters, the MM X registers, and the x87 FPU registers during acontext switch. The CPUID instruc-
tion has been enhanced to allow operating system or applicationsto identify for the existence of
the SSE and SSE2 features.
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The SSE2 extensions are accessible in all 1A-32 architecture operating modes in the Intel
Pentium 4 and Intel Xeon processors. Both processors maintain 1A-32 software compatibility.
All existing software continues to run correctly, without modification on the Pentium 4, Intel
Xeon, and future | A-32 processors that incorporate the SSE2 extensions. Also, existing software
continuesto run correctly in the presence of applicationsthat make use of the SSE2 instructions.

2.4. MOORE’S LAW AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel Chairman of the Board Gordon Moore made an observation: “the
number of transistors that would be incorporated on asilicon die would double every 18 months
for the next several years’. Over the past three and half decades, this prediction has continued
to hold true that it is often referred to as “Moore's Law.”

The computing power and the complexity (or roughly, the number of transistors per processor)
of Intel architecture processors has grown, over the years, in close relation to Moore's law. By
taking advantage of new process technology and new micro-architecture designs, each new
generation of 1A-32 processors have demonstrated frequency-scaling headroom and new perfor-
mance levels over the previous generation processors. The key features of the Intel Pentium 4
processor, Intel Xeon processor, Intel Xeon processor MP, Pentium 11l and Pentium Il Xeon
processors with advanced transfer cache are shown in Table 2-1. Older generation | A-32 proces-
sors, which do not employ on-die second-level cache, are shown in Table 2-2.
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Table 2-1. Key Features of Most Recent I1A-32 Processors

intgl.

Intel Date Micro- Clock Transis-| Register |System| Max. On-Die
Processor | Intro- | Architecture | Frequency | tors Per Sizes Bus |Extern.| Caches
duced at Intro- Die Band- | Addr.
duction width | Space
Pentium Il 1999 |P6 700 MHz 28 M GP: 32 Upto | 64 GB [3-KB L1;
and FPU: 80 1.06 256-KB L2
Pentium Il MMX: 64 GB/s
Xeon XMM: 128
Processors®
Pentium 4 2000 |Intel NetBurst | 1.50 GHz 42 M GP: 32 3.2 64 GB (12K pop
Processor Micro- FPU: 80 GB/s Execution
architecture MMX: 64 Trace
XMM: 128 Cache;
8KB L1;
256-KB L2
Intel Xeon 2001 |Intel NetBurst | 1.70 GHz 42 M GP: 32 3.2 64 GB (12K pop
Processor Micro- FPU: 80 GB/s Trace
architecture MMX: 64 Cache;
XMM: 128 8-KB L1;
256-KB L2
Intel Xeon 2002 |Intel NetBurst | 2.20 GHz 55 M GP: 32 3.2 64 GB [12K pop
Processor® Micro- FPU: 80 GB/s Trace
architecture; MMX: 64 Cache;
Hyper- XMM: 128 8-KB L1;
Threading 512-KB L2
Technology
Intel® 2002 |Intel NetBurst | 1.60 GHz 108 M GP: 32 3.2 64 GB [12K pop
Xeon™ Micro- FPU: 80 GB/s Trace
Processor architecture; MMX: 64 Cache;
MpP* Hyper- XMM: 128 8-KB L1;
Threading 256-KB L2;
Technology 1-MB L3
NOTES

1. The register size and external data bus size are given in bits.

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2

3. Intel Pentium IIl and Pentium Il Xeon processors, with advanced transfer cache and built on 0.18 micron
process technology, were introduced in October 1999.

4. Hyper-Threading technology is implemented with two logical processors.
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Table 2-2. Key Features of Previous Generations of 1A-32 Processors

Intel Processor Date | Max.Clock | Transis | Register Ext. Max. Caches
Intro- | Frequency -tors Sizes? Data | Extern.
duced at Intro- per Die Bus Addr.
duction Size? | Space
8086 1978 8 MHz 29K 16 GP 16 1 MB | None
Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB | Note 3
Intel386 DX Processor 1985 20 MHz 275K 32GP 32 4GB | Note 3
Intel486 DX Processor 1989 25 MHz 1.2M 32GP 32 4GB | L1:8KB
80 FPU
Pentium Processor 1993 60 MHz 3.1M 32 GP 64 4 GB L1:16KB
80 FPU
Pentium Pro Processor 1995 200 MHz 55M 32 GP 64 64 GB | L1: 16KB
80 FPU L2: 256KB
or 512KB
Pentium Il Processor 1997 266 MHz 7™ 32GP 64 64 GB | L1: 32KB
80 FPU L2: 256KB
64 MMX or 512KB
Pentium Il Processor 1999 500 MHz 8.2M 32 GP 64 64 GB | L1: 32KB
80 FPU L2: 512KB
64 MMX
128
XMM
NOTES:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose
(GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors

2. Internal data paths that are 2 to 4 times wider than the external data bus for each processor.

2.5. THE P6 FAMILY MICRO-ARCHITECTURE

The Pentium Pro processor introduced a new micro-architecture for the Intel 1A-32 processors,
commonly referred to as P6 processor microarchitecture. The P6 processor micro-architecture
was later enhanced with an on-die, 2nd level cache, called Advanced Transfer Cache. This
micro-architecture is a three-way superscalar, pipelined architecture. The term “three-way
superscalar” means that using parallel processing techniques, the processor is able on average
to decode, dispatch, and complete execution of (retire) three instructions per clock cycle. To
handle this level of instruction throughput, the P6 processor family use a decoupled, 12-stage
superpipeline that supports out-of-order instruction execution. Figure 2-1 shows a conceptual
view of the P6 processor micro-architecture pipeline with the Advanced Transfer Cache
enhancement. The micro-architecture pipelineisdivided into four sections (the 1st level and 2nd
level caches, the front end, the out-of-order execution core, and the retire section). Instructions
and data are supplied to these units through the bus interface unit.

I 2-9



INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

System Bus
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i |
o Branch History Update
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Figure 2-1. The P6 Processor Micro-Architecture with Advanced Transfer
Cache Enhancement

To insure a steady supply of instructions and data to the instruction execution pipeline, the P6
processor micro-architecture incorporates two cache levels. The first-level cache provides an 8-
KByte instruction cache and an 8-KByte data cache, both closely coupled to the pipeline. The
second-level cache is a 256-KByte, 512-KByte, or 1-MByte static RAM that is coupled to the
core processor through a full clock-speed 64-bit cache bus.

The centerpiece of the P6 processor micro-architecture is an innovative out-of-order execution
mechanism called “ dynamic execution.” Dynamic execution incorporates three data-processing
concepts:

®  Deep branch prediction.
® Dynamic dataflow analysis.
® Speculative execution.

Branch prediction is a modern technique to deliver high performance in pipelined micro-archi-
tectures. It allows the processor to decode instructions beyond branches to keep the instruction
pipelinefull. The P6 processor family implements highly optimized branch prediction algorithm
to predict the direction of the instruction stream through multiple levels of branches, procedure
calls, and returns.
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Dynamic dataflow analysisinvolvesreal-time analysis of the flow of datathrough the processor
to determine data and register dependencies and to detect opportunities for out-of-order instruc-
tion execution. The out-of-order execution core can simultaneously monitor many instructions
and execute these instructions in the order that optimizes the use of the processor’s multiple
execution units, while maintaining the data integrity. This out-of-order execution keeps the
execution units busy even when cache misses and data dependencies among instructions occur.

Speculative execution refers to the processor’s ability to execute instructions that lie beyond a
conditional branch that has not yet been resolved, and ultimately to commit the results in the
order of the original instruction stream. To make speculative execution possible, the P6
processor micro-architecture decouples the dispatch and execution of instructions from the
commitment of results. The processor’s out-of-order execution core uses data-flow analysis to
execute all available instructions in the instruction pool and store the resultsin temporary regis-
ters. The retirement unit then linearly searches the instruction pool for completed instructions
that no longer have data dependencies with other instructions or unresolved branch predictions.
When completed instructions are found, the retirement unit commits the results of theseinstruc-
tions to memory and/or the | A-32 registers (the processor’s eight general-purpose registers and
eight x87 FPU dataregisters) in the order they were originally issued and retires the instructions
from the instruction pool.

Combining branch prediction, dynamic data-flow analysis and speculative execution, the
dynamic execution capability of the P6 micro-architecture removes the constraint of linear
instruction sequencing between the traditional fetch and execute phases of instruction execution.
Thus, the processor can continue to decode instructions even when there are multiple levels of
branches. Branch prediction and advanced decoder implementation work together to keep the
instruction pipeline full. Subsequently, the out-of-order, speculative execution engine can take
advantage of the processor's six execution units to execute instructions in parallel. And finaly,
it commits the results of executed instructionsin original program order to maintain datainteg-
rity and program coherency.

2.6. THE INTEL NETBURST MICRO-ARCHITECTURE

The Intel NetBurst micro-architecture provides the following important features:
® Rapid Execution Engine:
— Arithmetic Logic Units (ALUs) run at twice the processor frequency.
— Basic integer operations executes in 1/2 processor clock tick.
— Provides higher throughput and reduced latency of execution.
® Hyper Pipelined Technology:

— Twenty-stage pipeline to enable industry-leading clock rates for desktop PCs and
servers,

— Provides frequency headroom and scalability to continue leadership into the future.

® Advanced Dynamic Execution:
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— Very deep, out-of-order, speculative execution engine.
* Upto 126instructionsin flight.
¢ Upto48loadsand 24 storesin pipeline.

— Enhanced branch prediction capability.
* Reduces the misprediction penalty associated with deeper pipelines.
* Advanced branch prediction algorithm.
* JK-entry branch target array.

® New cache subsystem:

— First level caches.
* Advanced Execution Trace Cache stores decoded instructions.
¢ Execution Trace Cache removes decoder latency from main execution loops.

* Execution Trace Cache integrates path of program execution flow into a single
line.

* Low latency data cache with 2 cycle latency.

— second level cache.
¢  Full-speed, unified 8-way 2nd-L evel on-die Advance Transfer Cache.
¢ Bandwidth and performance increases with processor frequency.

® High-performance, quad-pumped bus interface to the Intel NetBurst micro-architecture
system bus.

— Support quad-pumped, scalable bus clock to achieve 4X effective speed.

— Capable of delivering up to 3.2 GB of bandwidth per second for Pentium 4 and Intel
Xeon processors.

® Superscalar issue to enable parallelism.
® Expanded hardware registers with renaming to avoid register name space limitations.
® 128-byte cacheline size.

— Two 64-byte sectors.

Figure 2-2 gives an overview of the Intel NetBurst micro-architecture. This micro-architecture
pipeline is made up of three sections: an in-order issue front end, an out-of-order superscalar
execution core, and an in-order retirement unit. The following sections provide an overview of
each of these pipeline sections.
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Figure 2-2. The Intel NetBurst Micro-Architecture

2.6.1. The Front End Pipeline

Thefront end suppliesinstructionsin program order to the out-of-order corewhich hasvery high
execution bandwidth and can execute basic integer operations with 1/2 clock cycle latency. The
front end fetches and decodes 1A-32 instructions, and breaks them down into simple operations
called micro-ops (Lops). It can issue multiple pops per cycle, in original program order, to the
out-of-order core.

The front end performs several basic functions:

* Prefetch IA-32 instructions that are likely to be executed.

® Fetchinstructionsthat have not already been prefetched.

® Decode |A-32 instructions into micro-operations.

® Generate microcode for complex instructions and special-purpose code.
® Deliver decoded instructions from the execution trace cache.

® Predict branches using highly advanced algorithm.

The front end of the Intel NetBurst micro-architecture is designed to address some of the
common problems in high-speed, pipelined microprocessors. Two of these problems contribute
to major sources of delays:
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® thetime to decode instructions fetched from the target
® wasted decode bandwidth due to branches or branch target in the middle of cache lines.

The execution trace cache addresses both of these issues by storing decoded instructions.
Instructions are fetched and decoded by the trandlation engine and built into sequences of ops
called traces. These traces of ops are stored in the trace cache. The instructions from the most
likely target of a branch immediately follow the branch without regard for contiguity of instruc-
tion addresses. Once atrace is built, the trace cache is searched for the instruction that follows
that trace. If that instruction appears as the first instruction in an existing trace, the fetch and
decode of instructions from the memory hierarchy ceases and the trace cache becomes the new
source of instructions. The critical execution loop in the Intel NetBurst micro-architecture is
illustrated in Figure 2-2, it is simpler than the execution loop in the P6 micro-architecture that
isshown in Figure 2-1.

The execution trace cache and the trandation engine have cooperating branch prediction hard-
ware. Branch targets are predicted based on their linear addresses using branch target buffers
(BTBs) and fetched as soon as possible. Branch targets are fetched from the trace cache if they
areindeed cached there, otherwise they are fetched from the memory hierarchy. The trandation
engine's branch prediction information is used to form traces along the most likely paths.

2.6.2. The Out-of-order Core

The core's ahility to execute instructions out of order isakey factor in enabling parallelism. This
feature enables the processor to reorder instructions so that if one pop is delayed while waiting
for data or a contended execution resource, other pops that are later in program order may
proceed around it. The processor employs severa buffers to smooth the flow of pops. This
implies that when one portion of the pipeline experiences adelay, that delay may be covered by
other operations executing in parallel or by the execution of popswhich were previously queued
up in a buffer.

Thecoreisdesigned to facilitate parallel execution. It can dispatch up to six pops per cycle; note
that this exceeds the trace cache and retirement pop bandwidth. Most pipelines can start
executing a new pop every cycle, so that several instructions can bein flight at atime for each
pipeline. A number of arithmetic logical unit (ALU) instructions can start two per cycle, and
many floating-point instructions can start one every two cycles. Finaly, pops can begin
execution, out of order, as soon as their data inputs are ready and resources are available.

2.6.3. Retirement

The retirement section receives the results of the executed pops from the execution core and
processes the results so that the proper architectural state is updated according to the original
program order. The |A-32 retirement section implements a TSO "total store ¢ memory consis-
tency model and ensures that 1A-32 instructions retire in program order. 1A-32 exceptions also
occur in program order. Thus, exceptions cannot occur speculatively, they occur in the correct
order, and the machine can be correctly restarted after an exception.
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When apop completes and writesits result to the destination, it is retired. Up to three pops may
be retired per cycle. The Reorder Buffer (ROB) is the unit in the processor which buffers
completed pops, updatesthe architectural statein order, and managesthe ordering of exceptions.

The retirement section also keepstrack of branches and sends updated branch target information
to the BTB to update branch history. In this manner, traces that are no longer needed can be
purged from the trace cache and new branch paths can be fetched, based on updated branch
history information.

2.7. HYPER-THREADING TECHNOLOGY

Intel’s Hyper-Threading technol ogy is arecent addition to the | A-32 architecture that was devel-
oped to improve the performance of 1A-32 processors when executing multi-threaded operating
system and application code or single-threaded applications under multi-tasking environments.
This technology enables a single physical processor to execute two or more separate code
streams (called threads) concurrently.

Architecturally, an | A-32 processor with Hyper-Threading technology consists of two or more
logical processors, each of which has its own 1A-32 architectural state?. Figure 2-3 shows a
comparison of an |A-32 processor with Hyper-Threading Technology (implemented with two
logical processors) and atraditional multiple processor (MP) system.

IA-32 Processor With Traditional Multiple Processor (MP) System
Hyper-Threading Technology

Logical |AST| |AS | | AS | | AS |
Processor

Processor Core Processor Core Processor Core
1A-32 1A-32
The physical processor Processor Processor | Each processor is a
consists of two logical separate physical
processors that share a processor.
single processor core.
- - |
System Bus System Bus

T AS—IA-32 Architectural State

Figure 2-3. Comparison of an 1A-32 Processor with Hyper-Threading Technology and a
Traditional Dual Processor System.

2. The architectural state that is duplicated for each logical processor consists of the 1A-32 data registers,
segment registers, control registers, debug registers, and most of the MSRs. Each logical processor also
has its own advanced programmable interrupt controller (APIC).
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Unlike a traditional MP system configuration that uses two or more separate physical 1A-32
processors, thelogical processorsin an 1A-32 processor with Hyper-Threading technology share
the core resources of the physical processor, which include the execution engine and the system
bus interface. After power up and initialization, each logical processor can be individually
directed to execute a specified thread, interrupted, or halted, independently from the other
logical processor on the chip.

Hyper-Threading technology is designed to improve the performance of 1A-32 processors by
exploiting the multi-threaded nature of contemporary operating systems and server applications
in such a way as to increase the use of the on-chip execution resources available in the Intel
NetBurst microarchitecture.

Contemporary operating systems divide their work load up into processes and threads that can
beindependently schedul ed and dispatched to run on aprocessor. To increase performance, most
contemporary operating systems and applications are also designed to execute in MP environ-
ments, where, through the use of symmetric multiprocessing (SMP), processes and threads can
be dispatched to run on apool of processorswith several threads or processes s executing simul-
taneously on different processors.

Hyper-Threading technology leverages the process- and thread-level paralelism found in
contemporary operating systems and high-performance applications by providing two or more
logical processors on a single chip. This configuration allows two or more threads® to be
executed simultaneously on each a physical processor. Each logical processor executes instruc-
tions from an application thread using the resources in the processor core. The processor core
executes these multiple threads concurrently, using out-of-order instruction scheduling to maxi-
mize the use of the multiple execution units during each clock cycle.

The increase in instruction processing throughput that Hyper-Threading technology provides
results from a combination of three things:

® Thedesign of the Intel NetBurst micro-architecture

®  The mix of 1A-32 instructions typically found in multi-threaded code or multi-tasking
workloads.

®  The number of concurrent software threads that are available and ready to execute.

The Intel NetBurst micro-architecture with Hyper-Threading Technology was designed to
provide optimum performance when executing either a single software thread or two software
threads concurrently. When executing a single software thread, the execution resources are dedi-
cated to executing that thread as quickly as possible. However, typical applications may not use
the peak bandwidth of the processor every clock cycle. For example, branch mispredictions,
cache misses, and instruction dependencies all play a role in processor resource efficiency.
Hyper-Threading Technology, by allowing two software threads to execute concurrently, supply
the processor with opportunitiesto utilize the execution resources more effectively.

3. In the remainder of this document, the term “thread” will be used as a general term for the terms “pro-
cess” and “thread.”
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Resources that would otherwise be idle are used to process instructions from the other thread.
The net result is an increase in the instruction processing throughput for the physical processor
when executing multi-threaded code.

Hyper-Threading technology representsanew approach to improving theinstruction throughput
of processors that are targeted for multi-threaded applications and multi-tasking workloads. It
also provides a view into the future of microprocessor design where the performance of a
processor when executing a specific type of application or the space and power requirements of
aphysical processor may be asimportant asits raw processing speed.

2.7.1. Hyper-Threading Technology Implementations

Hyper-Threading technology was introduced into the 1A-32 architecture in the Intel® Xeon™
processor MP and in later steppings of the Intel Xeon processor. Both these processors imple-
ment Hyper-Threading technology with two logical processors. In the following paragraphs,
assume that all descriptions of the implementation of Hyper-Threading technology in the Intel
Xeon processor MP also apply to the later steppings of the Intel X eon processor.

The Intel Xeon processor M P appears to software as two independent | A-32 processors, similar
to two physical processors in a traditional dual processor (DP) platform. This configuration
allows operating system and application software that is already designed to run on atraditional
DP or MP system to run unmodified on an Intel Xeon processor MP. Here, the multiple threads
that would be dispatched to two or more physical processors are now dispatched to the logical
processorsin the Intel Xeon processor MP.

At the firmware (BIOS) level, the basic proceduresto initialize thelogical processorsin an Intel
X eon processor M P are the same as those for atraditional DP or MP platform®. The same mech-
anisms that are described in the Multiprocessor Specification Version 1.4 to power-up and
initialize physical processorsin an MP system apply to the logical processorsin an Intel Xeon
processor MP. An operating system designed to run on an traditional DP or MP platform can use
the CPUID instruction to detect the presence of an 1 A-32 processor with Hyper-Threading tech-
nology and the number of logical processors it provides.

Although existing operating system and application code will run correctly on a processor with
Hyper-Threading technology, some relatively simple code modifications are recommended to
get the optimum benefit from Hyper-Threading technology. These modifications are discussed
in the 1A-32 Intel Architecture Software Developer’s Manual, Volume 3, in the section titled
“Required Operating System Support” in Chapter 7, Multiple Processor Management.

4. Some relatively simple enhancements to the MP initialization algorithm are needed.

I 2-17



INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

2-18



| A-32 Execution
Environment






CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an 1A-32 processor as seen by
assembly-language programmers. It describes how the processor executes instructions and how
it stores and manipulates data. The parts of the execution environment described here include
memory (the address space), the general-purpose data registers, the segment registers, the
EFLAGS register, and the instruction pointer register.

3.1. MODES OF OPERATION

ThelA-32 architecture supports three operating modes: protected mode, real-address mode, and
system management mode. The operating mode determines which instructions and architectural
features are accessible:

®* Protected mode. This mode is the native state of the processor. In this mode all instruc-
tions and architectural features are available, providing the highest performance and
capability. Thisis the recommended mode for all new applications and operating systems.
Among the capabilities of protected mode is the ability to directly execute “rea-address
mode” 8086 software in a protected, multi-tasking environment. This feature is called
virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

® Real-address mode. This mode implements the programming environment of the Intel
8086 processor with a few extensions (such as the ability to switch to protected or system
management mode). The processor is placed in real-address mode following power-up or a
reset.

® System management mode (SSM). This mode provides an operating system or executive
with a transparent mechanism for implementing platform-specific functions such as power
management and system security. The processor enters SMM when the external SMM
interrupt pin (SMI#) is activated or an SMI is received from the advanced programmable
interrupt controller (APIC). In SMM, the processor switches to a separate address space
while saving the basic context of the currently running program or task. SMM-specific
code may then be executed transparently. Upon returning from SMM, the processor is
placed back into its state prior to the system management interrupt. SSM was introduced
with the Intel386™ SL and Intel486™ SL processors and became a standard 1A-32 feature
with the Pentium processor family.

The basic execution environment is the same for each of these operating modes, asis described
in the remaining sections of this chapter.
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3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on an 1A-32 processor is given a set of resources for executing
instructions and for storing code, data, and state information. These resources (described briefly
in the following paragraphs and shown in Figure 3-1) make up the basic execution environment
for an 1A-32 processor. This basic execution environment is used jointly by the application
programs and the operating-system or executive running on the processor.

® Address Space. Any task or program running on an |A-32 processor can address a linear
address space of up to 4 GBytes (2% bytes) and a physical address space of up to 64
GBytes (2% bytes). (See Section 3.3.3., “Extended Physical Addressing” for more
information about addressing an address space greater than 4 GBytes.)

® Basic program execution registers. The eight general-purpose registers, the six segment
registers, the EFLAGS register, and the EIP (instruction pointer) register comprise a basic
execution environment in which to execute a set of general-purpose instructions. These
instructions perform basic integer arithmetic on byte, word, and doubleword integers,
handle program flow control, operate on bit and byte strings, and address memory. (See
Section 3.4., “Basic Program Execution Registers’, for more information about these
registers.)

® x87 FPU registers. The eight x87 FPU data registers, the x87 FPU control register, the
status register, the x87 FPU instruction pointer register, the x87 FPU operand (data) pointer
register, the x87 FPU tag register, and the x87 FPU opcode register provide an execution
environment for operating on single-precision, double-precision, and double extended-
precision floating-point values, word-, doubleword, and quadword integers, and binary
coded decimal (BCD) values. (See Section 8.1., “x87 FPU Execution Environment”, for
more information about these registers.)

* MMX™ registers. The eight MMX registers support execution of single-instruction,
multiple-data (SIMD) operations on 64-bit packed byte, word, and doubleword integers.
(See Section 9.2, “the MMX Technology Programming Environment”, for more
information about these registers.)

* XMM registers. The eight XMM data registers and the MXCSR register support
execution of SIMD operations on 128-bit packed single-precision and double-precision
floating-point values and on 128-bit packed byte, word, doubleword, and quadword
integers. (See Section 10.2., “SSE Programming environment”, for more information
about these registers.)

® Sack. To support procedure or subroutine calls and the passing of parameters between
procedures or subroutines, a stack and stack management resources are included in the
execution environment. The stack (not shown in Figure 3-1) is located in memory. (See
Section 6.2., “Stack”, for more information about the stack structure.)

In addition to the resources provided in the basic execution environment, the | A-32 architecture
provides the following system resources. These resources are part of the |A-32 architecture's
system-level architecture. They provide extensive support for operating-system and system-
development software. Except for the 1/O ports, the system resources are described in detail in
the 1A-32 Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide.
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Basic Program Execution Registers Address Space*
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Figure 3-1. IA-32 Basic Execution Environment
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I/0O Ports. The 1A-32 architecture supports a transfers of data to and from input/output
(1/O) ports (see Chapter 12, Input/Output, in this volume).

Control registers. The five control registers (CRO through CR4) determine the operating
mode of the processor and the characteristics of the currently executing task (see the
section titled “Control Registers’ in Chapter 2 of the I1A-32 Intel Architecture Software
Developer’s Manual, Volume 3).

Memory management registers. The GDTR, IDTR, task register, and LDTR specify the
locations of data structures used in protected mode memory management (see the section
titled “Memory-Management Registers’ in Chapter 2 of the 1A-32 Intel Architecture
Software Developer’s Manual, Volume 3).

Debug registers. The debug registers (DRO through DR7) control and allow monitoring of
the processor’s debugging operations (see the section titled “Debug Registers’ in Chapter
15 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3).

Memory typerangeregisters (M TRRSs). The MTRRs are used to assign memory typesto
regions of memory (see the section titled “Memory Type Range Registers [MTRRS]” in
Chapter 10 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3).

M achine specific registers (M SRs). The processor provides a variety of machine specific
registers that are used to control and report on processor performance. Virtualy all MSRs
handle system related functions and are not accessible to an application program. One
exception to this rule is the time-stamp counter. The MSRs are described Appendix B,
Model-Specific Registers (MSRs) of the 1A-32 Intel Architecture Software Developer’s
Manual, Volume 3).

Machine check registers. The machine check registers consist of a set of control, status,
and error-reporting MSRs that are used to detect and report on hardware (machine) errors
(see the section titled “Machine-Check MSRS’ in Chapter 14 of the A-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3).

Performance monitoring counters. The performance monitoring counters allow
processor performance events to be monitored (see the section titled “Performance
Monitoring Overview” in Chapter 15 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3).

The remainder of this chapter describes the organization of memory and the address space, the
basi c program execution registers, and addressing modes. Refer to the following chaptersin this
volume for descriptions of the other program execution resources shown in Figure 3-1:

3-4

x87 FPU registers—See Chapter 8, Programming with the x87 FPU.
MMX Registers—See Chapter 9, Programming With the Intel MMX Technology.

XMM registers—See Chapter 10, Programming with the Sreaming SMD Extensions
(SSE) and Chapter 11, Programming With the Sreaming SMD Extensions 2 (SSE2),
respectively.

Stack implementation and procedure calls—See Chapter 6, Procedure Calls, Interrupts,
and Exceptions.
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3.3. MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical
memory is organized as a sequence of 8-bit bytes. Each byteis assigned aunique address, called
aphysical address. The physical address space ranges from zero to a maximum of 2%-1
(64 GBytes).

Virtually any operating system or executive designed to work with an |A-32 processor will use
the processor’s memory management facilities to access memory. These facilities provide
features such as segmentation and paging, which allow memory to be managed efficiently and
reliably. Memory management is described in detail in Chapter 3, Protected-Mode Memory
Management, in the 1A-32 Intel Architecture Software Developer’s Manual, Volume 3. The
following paragraphs describe the basic methods of addressing memory when memory manage-
ment is used.

When employing the processor’'s memory management facilities, programs do not directly
address physical memory. Instead, they access memory using any of three memory models: flat,
segmented, or real-address mode.

With the flat memory model (see Figure 3-2), memory appearsto a program as asingle, contin-
uous address space, called alinear address space. Code (a program'’s instructions), data, and
the procedure stack are all contained in this address space. The linear address space is byte
addressable, with addresses running contiguously from 0to 22— 1. An address for any bytein
the linear address spaceis called alinear address.

With the segmented memory model, memory appears to a program as a group of independent
address spaces called segments. When using this model, code, data, and stacks are typically
contained in separate segments. To address a byte in a segment, a program must issue alogical
address, which consists of a segment selector and an offset. (A logical addressis often referred
toasafar pointer.) The segment selector identifies the segment to be accessed and the offset
identifies a byte in the address space of the segment. The programs running on an 1A-32
processor can address up to 16,383 segments of different sizes and types, and each segment can
be as large as 2*2 bytes.

Internally, all the segments that are defined for a system are mapped into the processor’s linear
address space. To access a memory location, the processor thus translates each logical address
into alinear address. This trandlation is transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of programs and
systems. For example, placing a program’s stack in a separate segment prevents the stack from
growing into the code or data space and overwriting instructions or data, respectively. Placing
the operating system’s or executive's code, data, and stack in separate segments also protects
them from the application program and vice versa.

With the flat or the segmented memory model, the linear address space is mapped into the
processor’s physical address space either directly or through paging. When using direct mapping
(paging disabled), each linear address has a one-to-one correspondence with a physical address
(that is, linear addresses are sent out on the processor’s address lines without translation). When
using the 1A-32 architecture’s paging mechanism (paging enabled), the linear address space is
divided into pages, which are mapped into virtual memory. The pages of virtual memory are
then mapped as needed into physical memory. When an operating system or executive uses
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paging, the paging mechanism is transparent to an application program; that is, al the applica-
tion program seesis the linear address space.

Flat Model
Linear Address

L.
?

Linear
Address
Space*

Segmented Model

Segments

Offset Linear
:Ise Address
Logical Space*
Addgr]ess Segment Selector >
Real-Address Mode Model
Linear Address
Offset Space Divided | — —

Into Equal

Logical Sized Segmenti_ _ ]

Address Segment Selector

\A

* The linear address space F = =
can be paged when using the
flat or segmented model.

Figure 3-2. Three Memory Management Models

The real-address mode memory model uses the memory model for the Intel 8086 processor.
This memory model is supported in the 1A-32 architecture for compatibility with existing
programs written to run on the Intel 8086 processor. The real-address mode uses a specific
implementation of segmented memory inwhich the linear address space for the program and the
operating system/executive consists of an array of segmentsof up to 64 KBytesin size each. The
maximum size of the linear address space in real-address mode is 2%° bytes. (See Chapter 16,
8086 Emulation, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for
more information on this memory model.)

3-6 I



Intel® BASIC EXECUTION ENVIRONMENT

3.3.1. Modes of Operation vs. Memory Model

When writing code for an | A-32 processor, a programmer needs to know the operating mode the
processor isgoing to bein when executing the code and the memory model being used. Therela-
tionship between operating modes and memory modelsis as follows:

®* Protected mode. When in protected mode, the processor can use any of the memory
models described in this section. (The real-addressing mode memory model is ordinarily
used only when the processor is in the virtual-8086 mode.) The memory model used
depends on the design of the operating system or executive. When multitasking is imple-
mented, individual tasks can use different memory models.

® Real-address mode. When in real-address mode, the processor only supports the real-
address mode memory model.

® System management mode. When in SMM, the processor switches to a separate address
space, caled the system management RAM (SMRAM). The memory model used to
address bytes in this address space is similar to the real-address mode model. (See Chapter
13, System Management Mode (SMM), in the 1A-32 Intel Architecture Software
Developer’'s Manual, Volume 3, for more information on the memory model used in
SMM.)

3.3.2. 32-Bit vs. 16-Bit Address and Operand Sizes

The processor can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH
(2%2-1), and operand sizes are typically 8 bits or 32 bits. With 16-bit address and operand sizes,
the maximum linear address or segment offset is FFFFH (2%6-1), and operand sizes are typically
8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment
selector and a32-bit offset; when using 16-bit addressing, it consists of a16-bit segment sel ector
and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from
within a program.

When operating in protected mode, the segment descriptor for the currently executing code
segment defines the default address and operand size. A segment descriptor is a system data
structure not normally visible to application code. Assembler directives allow the default
addressing and operand size to be chosen for a program. The assembler and other tool s then set
up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An
address-size override can be used in real -address mode to enabl e 32-bit addressing; however, the
maximum allowable 32-hit linear address is still 000FFFFFH (22°-1).
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3.3.3. Extended Physical Addressing

Beginning with the P6 family processors, the | A-32 architecture supports addressing of up to 64
GBytes (2% bytes) of physical memory. A program or task cannot address locations in this
address space directly. Instead it addresses individual linear address spaces of up to 4 GBytes
that are mapped to the larger 64-GByte physical address space through the processor’s virtual
memory management mechanism. A program can switch between linear address spaces within
this 64-GByte physical address space by changing segment selectors in the segment registers.
The use of extended physical addressing requires the processor to operate in protected mode and
the operating system to provide a virtual memory management system. (See “ 36-Bit Physical
Addressing Using the PAE Paging Mechanism” in Chapter 3 of the | A-32 Intel Architecture Soft-
ware Devel oper’s Manual, Volume 3 for more information about this addressing mechanism.)

3.4. BASIC PROGRAM EXECUTION REGISTERS

The processor provides 16 registers basic program execution registers for use in general system
and application programing. As shown in Figure 3-3, these registers can be grouped as follows:

® General-purpose registers. These eight registers are available for storing operands and
pointers.

® Segment registers. These registers hold up to six segment selectors.

® EFLAGS (program status and control) register. The EFLAGS register report on the
status of the program being executed and allows limited (application-program level)
control of the processor.

® EIP (instruction pointer) register. The EIP register contains a 32-hit pointer to the next
instruction to be executed.

3.4.1. General-Purpose Registers

The 32-hit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

® QOperandsfor logical and arithmetic operations
® Operands for address calculations
® Memory pointers.

Although all of these registers are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to amemory location in the DS segment.
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31 General-Purpose Registers

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

Segment Registers
15 0

CS
DS
SS
ES
FS
GS

Program Status and Control Register
1 0

| | EFLAGS

31 Instruction Pointer 0

| |EIP

Figure 3-3. General System and Application Programming Registers

The special uses of general-purpose registers by instructions are described in Chapter 5, Instruc-
tion Set Summary, in this volume and Chapter 3, Instruction Set Reference, in the 1A-32 Intel
Architecture Software Developer’s Manual, Volume 2. The following is a summary of these
special uses:

® EAX—Accumulator for operands and results data.
® EBX—Pointer to datain the DS segment.

® ECX—Counter for string and loop operations.

® EDX—I/O pointer.

® ESI—Pointer to datain the segment pointed to by the DS register; source pointer for string
operations.9

® EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.
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® ESP—Stack pointer (in the SS segment).
® EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names
AX, BX, CX, DX, BR, SP, S, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and
EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and AL, BL,
CL, and DL (low bytes).

General-Purpose Registers

31 16 15 87 0 16-bit 32-bit
AH AL AX EAX

BH BL BX EBX

CH CL CX ECX

DH DL DX EDX

BP EBP

Sl ESI

DI EDI

SP ESP

Figure 3-4. Alternate General-Purpose Register Names

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector isaspecia pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structureis given in Chapter 3, Protected-Mode Memory Management, of the |A-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register pointsto the code segment and all the other segment regi sters point to the data and stack

segment.)
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When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register pointsto a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segmentsin the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a

segment register.

Segment Registers

CS—
DS —
SS —
ES —
FS —
GS—

The segment selector in

Linear Address

Overlapping
Segments
of up to
4G Bytes
Beginning at
Address 0

each segment register
points to an overlapping
segment in the linear
address space.

Y

Space for Program

Figure 3-5. Use of Segment Registers for Flat Memory Model
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Figure 3-6. Use of Segment Registers in Segmented Memory Model
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Each of the segment registers is associated with one of three types of storage: code, data, or
stack). For example, the CS register contai ns the segment selector for the code segment, where
the instructions being executed are stored. The processor fetches instructions from the code
segment, using alogical address that consists of the segment selector in the CS register and the
contents of the EIP register. The EIP register contains the offset within the code segment of the
next instruction to be executed. The CS register cannot be loaded explicitly by an application
program. Instead, it is loaded implicitly by instructions or internal processor operations that
change program control (such as, procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data
segments permits efficient and secure access to different types of data structures. For example,
four separate data segments might be created: one for the data structures of the current module,
another for the data exported from a higher-level module, athird for adynamically created data
structure, and afourth for data shared with another program. To access additional data segments,
the application program must |oad segment sel ectors for these segmentsintothe DS, ES, FS, and
GS registers, as needed.

The SSregister contains the segment selector for astack segment, where the procedure stack is
stored for the program, task, or handler currently being executed. All stack operations use the
SS register to find the stack segment. Unlike the CS register, the SS register can be loaded
explicitly, which permits application programsto set up multiple stacks and switch among them.

See Section 3.3., “Memory Organization”, for an overview of how the segment registers are
used in real-address mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in
the Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the 1 A-
32 Architecture with the Intel 386™ family of processors.

3.4.3. EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of
system flags. Figure 3-7 defines the flags within this register. Following initiaization of the
processor (either by asserting the RESET pin or the INIT pin), the state of the EFL AGS register
is00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register are reserved. Software should
not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose
instructions (described in the following sections). There are no instructions that allow the whole
register to be examined or modified directly. However, the following instructions can be used to
move groups of flags to and from the procedure stack or the EAX register: LAHF, SAHF,
PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been
transferred to the procedure stack or EA X register, the flags can be examined and modified using
the processor’s bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending atask (using the processor’s multitasking facilities), the processor automati-
cally saves the state of the EFLAGS register in the task state segment (TSS) for the task being
suspended. When binding itself to a new task, the processor loads the EFLAGS register with
data from the new task’'s TSS.
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When acall ismadeto an interrupt or exception handler procedure, the processor automatically
saves the state of the EFL AGS registers on the procedure stack. When an interrupt or exception
is handled with atask switch, the state of the EFLAGS register is saved in the TSS for the task
being suspended.
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Figure 3-7. EFLAGS Register

Asthe IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the
function and placement of existing flags have remained the same from one family of the |A-32
processors to the next. As aresult, code that accesses or modifies these flags for one family of
| A-32 processors works as expected when run on later families of processors.

3.4.3.1. STATUS FLAGS

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arith-
metic instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the
status flags are as follows:

CF (bit 0) Carry flag. Set if an arithmetic operation generatesacarry or aborrow out
of the most-significant bit of the result; cleared otherwise. This flag indi-
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cates an overflow condition for unsigned-integer arithmetic. It isalso used
in multiple-precision arithmetic.

PF (bit 2) Parity flag. Set if the least-significant byte of the result contains an even
number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a borrow
out of bit 3 of the result; cleared otherwise. This flag is used in binary-
coded decimal (BCD) arithmetic.

ZF (bit 6) Zeroflag. Set if theresult is zero; cleared otherwise.

SF (bit 7) Sign flag. Set equal to the most-significant bit of the result, which is the
sign bit of asigned integer. (0 indicates a positive value and 1 indicates a
negative value.)

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number or

too small a negative number (excluding the sign-bit) to fit in the destina-
tion operand; cleared otherwise. Thisflag indicates an overflow condition
for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions. Also thebit instructions (BT, BTS, BTR, and BTC) copy aspecified bit into the CF

flag.

The status flags allow a single arithmetic operation to produce results for three different data
types: unsigned integers, signed integers, and BCD integers. If the result of an arithmetic oper-
ation istreated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or
a borrow); if treated as a signed integer (two’s complement number), the OF flag indicates a
carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF
flag indicates the sign of asigned integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction
with the add with carry (ADC) and subtract with borrow (SBB) instructionsto propagate a carry
or borrow from one computation to the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code
cc), LOOPcc, and CMOV cc (conditional move) use one or more of the status flags as condition
codes and test them for branch, set-byte, or end-loop conditions.

3.4.3.2. DF FLAG

Thedirectionflag (DF, located in bit 10 of the EFL AGS register) controlsthe string instructions
(MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the string instructions to
auto-decrement (that is, to process strings from high addresses to low addresses). Clearing the
DF flag causes the string instructions to auto-increment (process strings from low addresses
to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.
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3.4.4. System Flags and IOPL Field

The system flags and |OPL field in the EFLAGS register control operating-system or executive
operations. They should not be modified by application programs. The functions of the
system flags are as follows:

IF (bit 9)

TF (bit 8)

IOPL (bits 12 and 13)

NT (bit 14)

RF (bit 16)
VM (bit 17)

AC (bit 18)

VIF (bit 19)

VIP (bit 20)

ID (bit 21)

Interrupt enable flag. Controls the response of the processor to
maskabl e interrupt requests. Set to respond to maskable interrupts;
cleared to inhibit maskable interrupts.

Trap flag. Set to enable single-step mode for debugging; clear to
disable single-step mode.

[/Oprivilegelevel field.Indicatesthel /Oprivilegel evel of thecurrently
running program or task. The current privilege level (CPL) of the
currently running program or task must be less than or equal to the
1/O privilegelevel to accessthe /O address space. Thisfield can only
be modified by the POPF and IRET instructions when operating at a
CPL of 0.

Nested task flag. Controls the chaining of interrupted and called
tasks. Set when the current task is linked to the previously executed
task; cleared when the current task is not linked to another task.

Resumeflag. Controlsthe processor’sresponseto debug exceptions.

Virtual-8086 mode flag. Set to enable virtual-8086 mode; clear to
return to protected mode without virtual-8086 mode semantics.

Alignment check flag. Set this flag and the AM bit in the CRO
register to enable alignment checking of memory references; clear
the AC flag and/or the AM bit to disable alignment checking.

Virtual interrupt flag. Virtual image of the IF flag. Used in
conjunction with the VIP flag. (To use this flag and the VIP flag the
virtual mode extensions are enabled by setting the VME flag in
control register CR4.)

Virtual interrupt pending flag. Set to indicate that an interrupt is
pending; clear when no interrupt is pending. (Software sets and
clearsthisflag; the processor only readsit.) Used in conjunction with
the VIF flag.

Identification flag. The ability of a program to set or clear this flag
indicates support for the CPUID instruction.

See Chapter 3, Protected-Mode Memory Management, in the 1A-32 Intel Architecture Software
Developer’s Manual, Volume 3, for adetail description of these flags.
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3.5. INSTRUCTION POINTER

Theinstruction pointer (EIP) register contains the offset in the current code segment for the next
instruction to be executed. It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of instructions when executing JMP,
Jee, CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-
transfer instructions (such as JIMP, Jec, CALL, and RET), interrupts, and exceptions. The only
way to read the EIP register is to execute a CALL instruction and then read the value of the
return instruction pointer from the procedure stack. The EIP register can be loaded indirectly by
modifying the value of areturn instruction pointer on the procedure stack and executing areturn
instruction (RET or IRET). See Section 6.2.4.2., “Return Instruction Pointer”.

All 1A-32 processors prefetch instructions. Because of instruction prefetching, an instruction
address read from the bus during an instruction load does not match the value in the EI P register.
Even though different processor generations use different prefetching mechanisms, the function
of EIP register to direct program flow remains fully compatible with all software written to run
on |A-32 processors.

3.6. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When the processor is executing in protected mode, every code segment has a default operand-
size attribute and address-size attribute. These attributes are selected with the D (default size)
flag in the segment descriptor for the code segment (see Chapter 3, Protected-Mode Memory
Management, in the 1A-32 Intel Architecture Software Developer’s Manual, Volume 3). When
the D flag is set, the 32-bit operand-size and address-size attributes are selected; when the flag
is clear, the 16-hit size attributes are selected. When the processor is executing in real-address
mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are
always 16 bits.

The operand-size attribute selects the sizes of operands that instructions operate on. When the
16-bit operand-size attribute is in force, operands can generally be either 8 bits or 16 bits, and
when the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32
bits. When the 16-bit address-size attribute isin force, segment offsets and displacements are 16
bits. This restriction limits the size of a segment that can be addressed to 64 KBytes. When the
32-bit address-size attribute is in force, segment offsets and displacements are 32 bits, allowing
segments of up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a partic-
ular instruction by adding an operand-size and/or address-size prefix to an instruction (see
“Instruction Prefixes’ in Chapter 2 of the 1A-32 Intel Architecture Software Developer’s
Manual, Volume 3). The effect of this prefix applies only to the instruction it is attached to.

Table 3-1 shows effective operand size and address size (when executing in protected mode)
depending on the settings of the D flag and the operand-size and address-size prefixes.
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Table 3-1. Effective Operand- and Address-Size Attributes

D Flag in Code Segment
Descriptor 0 0 0 0 1 1

Operand-Size Prefix 66H

Address-Size Prefix 67H

Effective Operand Size 16 16 32 32 32 32 16 16
Effective Address Size 16 32 16 32 32 16 32 16
NOTES:

Y Yes, this instruction prefix is present.
N No, this instruction prefix is not present.

3.7. OPERAND ADDRESSING

I A-32 machine-instructions act on zero or more operands. Some operands are specified explic-
itly in an instruction and others are implicit to an instruction. The data for a source operand can
be located in any of the following places:

® Theinstruction itself (an immediate operand).
® A register.

®* A memory location.

®* Anl/O port.

When an instruction returns data to a destination operand, it can be returned to any of the
following places:

® A register.
®* A memory location.
® Anl/O port.

3.7.1. Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands
are caled immediate operands (or simply immediates). For example, the following ADD
instruction adds an immediate value of 14 to the contents of the EAX register:

ADD EAX, 14
All the arithmetic instructions (except the DIV and IDIV instructions) allow the source operand
to be an immediate value. The maximum value allowed for an immediate operand varies among

instructions, but can never be greater than the maximum value of an unsigned doubleword
integer (2%).
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3.7.2. Register Operands

Source and destination operands can be any of the following registers, depending on the instruc-
tion being executed:

® The 32-hit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).
® The 16-bit general-purpose registers (AX, BX, CX, DX, Sl, DI, SP, or BP).

®  The 8-hit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).

®  The segment registers (CS, DS, SS, ES, FS, and GS).

® The EFLAGS register.

® The x87 FPU registers (STO through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer).

® The MMX registers (MMO through MM?7).
®  The XMM registers (XMMO through XXM?7) and the MXCSR register.

®* The control registers (CRO, CR2, CR3, CR4) and system table pointer registers (GDTR,
LDTR, IDTR, task register).

® Thedebug registers (DRO, DR1, DR2, DR3, DR6, DRY).
® The MSR registers.

Some instructions (such as the DIV and MUL instructions) use quadword operands contained
in apair of 32-bit registers. Register pairs are represented with a colon separating them. For
example, intheregister pair EDX:EAX, EDX containsthe high order bitsand EAX containsthe
low order bits of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and
store the contents of the EFLAGS register or to set or clear individual flagsin thisregister. Other
instructions (such as the Jcc instructions) use the state of the status flagsin the EFL AGSregister
as condition codes for branching or other decision making operations.

The processor contains a selection of system registersthat are used to control memory manage-
ment, interrupt and exception handling, task management, processor management, and debug-
ging activities. Some of these system registers are accessible by an application program, the
operating system, or the executive through a set of system instructions. When accessing a
system register with a system instruction, the register is generally an implied operand of the
instruction.

3.7.3.  Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and
an offset (see Figure 3-8). The segment selector specifies the segment containing the operand
and the offset (the number of bytes from the beginning of the segment to the first byte of the
operand) specifiesthe linear or effective address of the operand.
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15 0 31 0

Segment Offset (or Linear Address)
Selector

Figure 3-8. Memory Operand Address

3.7.3.1. SPECIFYING A SEGMENT SELECTOR

The segment selector can be specified either implicitly or explicitly. The most common method
of specifying a segment selector isto load it in a segment register and then allow the processor
to select the register implicitly, depending on the type of operation being performed. The
processor automatically chooses a segment according to the rules given in Table 3-2.

When storing data in or loading data from memory, the DS segment default can be overridden
to allow other segments to be accessed. Within an assembler, the segment override is generally
handled with a colon “:” operator. For example, the following MOV instruction moves a value
from register EAX into the segment pointed to by the ES register. The offset into the segment is
contained in the EBX register:

MOV ES: [ EBX], EAX;

Table 3-2. Default Segment Selection Rules

Type of Register Segment
Reference Used Used Default Selection Rule

Instructions CSs Code Segment | All instruction fetches.

Stack SS Stack Segment | All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination ES Data Segment Destination of string instructions.

Strings pointed to with

the ES register

(At the machine level, a segment override is specified with a segment-override prefix, which is
a byte placed at the beginning of an instruction.) The following default segment selections
cannot be overridden:

® |nstruction fetches must be made from the code segment.

® Dedtination strings in string instructions must be stored in the data segment pointed to by
the ES register.

®  Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit
segment selector can be located in a memory location or in a 16-bit register. For example, the
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following MOV instruction moves a segment selector located in register BX into segment
register DS:

MOV DS, BX

Segment selectors can also be specified explicitly aspart of a48-hit far pointer in memory. Here,
the first doubleword in memory contains the offset and the next word contains the segment
selector.

3.7.3.2. SPECIFYING AN OFFSET

The offset part of amemory address can be specified either directly as an static value (called a
displacement) or through an address computation made up of one or more of the following
components:

® Displacement—An 8-, 16-, or 32-bit value.

® Base—Thevaluein ageneral-purpose register.

®* |ndex—The value in a general-purpose register.

® Scalefactor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these componentsis called an effective address. Each of
these components can have either a positive or negative (2s complement) val ue, with the excep-
tion of the scaling factor. Figure 3-9 shows all the possible ways that these components can be
combined to create an effective addressin the selected segment.

Base Index Scale Displacement
EAX
EBX EAX 1 None
EBX
ECX .
EDX ECX 2 8-bit
ESp + EDX | % +
EBP 3 16-bit
EBP
ESI .
ESI EDI 4 32-hit
EDI
Offset = Base + (Index OScale) + Displacement

Figure 3-9. Offset (or Effective Address) Computation

Theuses of general -purposeregisters as base or index components are restricted in the following
manner:

® The ESP register cannot be used as an index register.

®  When the ESP or EBP register is used as the base, the SS segment is the default segment.
In all other cases, the DS segment is the default segment.

Thebase, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor may be used only when an index also is used. Each
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possible combination is useful for data structures commonly used by programmersin high-level
languages and assembly language. The following addressing modes suggest uses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso-
lute or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Base + Displacement
A base register and a displacement can be used together for two distinct purposes:

® Asanindex into an array when the element sizeis not 2, 4, or 8 bytes—The displacement
component encodes the static offset to the beginning of the array. The base register holds
the results of a calculation to determine the offset to a specific element within the array.

® To access afield of arecord—The base register holds the address of the beginning of the
record, while the displacement is an static offset to the field.

An important special case of this combination is access to parametersin a procedure activation
record. A procedure activation record is the stack frame created when a procedure is entered.
Here, the EBP register is the best choice for the base register, because it automatically selects
the stack segment. Thisis acompact encoding for this common function.

(Index OScale) + Displacement

This address mode offers an efficient way to index into a static array when the element sizeis 2,
4, or 8 bytes. The displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscript
into an index by applying the scaling factor.

Base + Index + Displacement

Using two registerstogether supports either atwo-dimensional array (the displacement holdsthe
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to afield within the record).

Base + (Index OScale) + Displacement

Using al the addressing components together allows efficient indexing of a two-dimensional
array when the elements of the array are 2, 4, or 8 bytesin size.
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3.7.3.3. ASSEMBLER AND COMPILER ADDRESSING MODES

At the machine-code level, the selected combination of displacement, base register, index
register, and scale factor is encoded in an instruction. All assemblers permit a programmer to
use any of the allowable combinations of these addressing components to address operands.
High-level language compilers will select an appropriate combination of these components
based on the language construct a programmer defines.

3.7.4. 1/0O Port Addressing

The processor supports an |/O address space that contains up to 65,536 8-bit I/O ports. Portsthat
are 16-bit and 32-hit may also be defined in the I/O address space. An I/O port can be addressed
with either an immediate operand or avalue in the DX register. See Chapter 12, Input/Output,
for more information about 1/0O port addressing.
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CHAPTER 4
DATA TYPES

This chapter introduces 1A-32 architecture defined data types. A section at the end of this
chapter describes the real-number and floating-point concepts used in the x87 FPU and the SSE
and SSE2 extensions.

4.1. FUNDAMENTAL DATA TYPES

The fundamental data types of the 1A-32 architecture are bytes, words, doublewords, quad-
words, and double quadwords (see Figure 4-1). A byte is eight bits, aword is 2 bytes (16 bits),
adoubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), and a double quadword is 16
bytes (128 hits). A subset of the | A-32 architecture instructions operates on these fundamental
data types without any additional operand typing.

7 0
o
N

15 87 0

Word
N+1 N
31 16 15 0
| High Word | Low Word | Doubleword
N+2 N
63 32 31 0
| High Doubleword | Low Doubleword | Quadword
N+4 N
127 64 63 0
High Quadword | Low Quadword gﬂgzlf/or d
N+8 N

Figure 4-1. Fundamental Data Types

The quadword data type was introduced into the 1A-32 architecture in the Intel486 processor;
the double quadword data type was introduced in the Pentium 111 processor with the SSE exten-
sions.

Figure 4-2 shows the byte order of each of the fundamental datatypeswhen referenced as oper-
ands in memory. The low byte (bits O through 7) of each data type occupies the lowest address
in memory and that address is also the address of the operand.
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12H EH A
7AH DH
Word at Address BH FEH CH Doubleword at Address AH
Contains FEO6H 06H BH Contains 7AFE0636H
36H AH
Byte at Address 9H — 1EH oH -
Contains 1FH __ Quadword at Address 6H
ﬁ A4H 8H Contains
7TAFEO06361FA4230BH
Word at Address 6H 23H 7H
Contains 230BH OBH 6H
45H 5H
67H 4H
Word at Address 2H 1
Contains 74CBH i 74H 3H
Double quadword at Address OH
Word at A_ddress 1H v CBH 2H Comaing
Contains CB31H 31H 1H | 127AFE06361FA4230B456774CB3112H
12H OH

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory

4.1.1. Alignment of Words, Doublewords, Quadwords, and
Double Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural bound-
aries. (The natural boundaries for words, double words, and quadwords are even-numbered
addresses, addresses evenly divisible by four, and addresses evenly divisible by eight, respec-
tively.) However, to improve the performance of programs, data structures (especially stacks)
should be aligned on natural boundaries whenever possible. The reason for this is that the
processor requires two memory accesses to make an unaligned memory access, whereas,
aligned accesses require only one memory access. A word or doubleword operand that crosses
a 4-byte boundary or a quadword operand that crosses an 8-byte boundary is considered
unaligned and requires two separate memory bus cyclesto accessit; aword that starts on an odd
address but does not cross a word boundary is considered aligned and can still be accessed in
one bus cycle.

Some instructions that operate on double quadwords require memory operands to be aligned on
a natural boundary. These instructions generate a general-protection exception (#GP) if an
unaligned operand is specified. A natural boundary for adouble quadword is any address evenly
divisible by 16. Other instructions that operate on double quadwords permit unaligned access
(without generating a general -protection exception), however, additional memory buscyclesare
reguired to access unaligned data from memory.
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4.2. NUMERIC DATA TYPES

Although bytes, words, and doublewords are the fundamental data types of the |A-32 architec-
ture, some instructions support additional interpretations of these datatypesto allow operations
to be performed on numeric data types (signed and unsigned integers, and floating-point
numbers). See Figure 4-3.

:l Byte Unsigned Integer

~
o

|:| Word Unsigned Integer

Doubleword Unsigned Integer

Quadword Unsigned Integer

0
|
0
|
0
Sign
D:l Byte Signed Integer

Sign
Word Signed Integer

D

15 14 0
Sign

3130 0

Doubleword Signed Integer

Sign

63 62

Quadword Signed Integer

o

Sign

Single Precision
Floating Point

3130 2322

ol

Sign

63 62 5251

Double Precision
Floating Point

oL

Sign Integer Bit o
| ‘ | ‘ | Double Extended Precision
Floating Point

7978 646362 0

Figure 4-3. Numeric Data Types
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4.2.1. Integers

The 1A-32 architecture defines two typed of integers. unsigned and signed. Unsigned integers
are ordinary binary values ranging from 0 to the maximum positive number that can be encoded
in the selected operand size. Signed integers are two’'s complement binary values that can be
used to represent both positive and negative integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate
on either unsigned or signed integer operands. Other integer instructions (such asIMUL, MUL,,
IDIV, DIV, FIADD, and FISUB) operate on only one integer type.

The following sections describe the encodings and ranges of the two types of integers.

4.2.1.1. UNSIGNED INTEGERS

Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and
guadword. Their values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for
an unsigned word integer, from 0 to 2%2 — 1 for an unsigned doubleword integer, and from 0 to
2% — 1 for an unsigned quadword integer. Unsigned integers are sometimes referred to as or di-
nals.

4.2.1.2. SIGNED INTEGERS

Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All
operations on signed integers assume a two's complement representation. The sign bit islocated
in bit 7 in abyteinteger, bit 15 in aword integer, bit 31 in a doubleword integer, and bit 63 in a
guadword integer (see the signed integer encodingsin Table 4-1).

Table 4-1. Signed Integer Encodings

Class Two’s Complement Encoding
Sign
Positive Largest 0 11..11
Smallest 0 00..01
Zero 0 00..00
Negative Smallest 1 11..11
Largest 1 00..00
Integer indefinite 1 00..00
Signed Byte Integer: «— 7 hits —
Signed Word Integer: «— 15 bits —
Signed Doubleword Integer: «— 31 Bits —
Signed Quadword Integer: «— 63 Bits —
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The sign bit is set for negative integers and cleared for positive integers and zero. Integer values
range from —128 to +127 for a byte integer, from —32,768 to +32,767 for aword integer, from —
2% to +2%! — 1 for a doubleword integer, and from —2% to +2% — 1 for a quadword integer.

When storing integer valuesin memory, word integers are stored in 2 consecutive bytes; double-
word integers are stored in 4 consecutive bytes; and quadword integers are stored in 8 consecu-
tive bytes.

Theinteger indefinite is a special value that is sometimes returned by the x87 FPU when oper-
ating on integer values (see Section 8.2.1., “Indefinites’).

4.2.2. Floating-Point Data Types

The | A-32 architecture defines and operates on three floating-point data types: single-precision
floating-point, double-precision floating-point, and double-extended precision floating-point
(see Figure 4-3). The data formats for these data types correspond directly to formats specified
in the IEEE Standard 754 for Binary Floating-Point Arithmetic. Table 4-2 gives the length,
precision, and approximate normalized range that can be represented of each of these datatypes.
Denormal values are also supported in each of these types.

Table 4-2. Length, Precision, and Range of Floating-Point Data Types

Data Type Length | Precision Approximate Normalized Range
(Bits) - -
Binary Decimal
Single Precision 32 24 27126 tg 2127 1.18 x 108 t0 3.40 x 10%®
Double Precision 64 53 271022 g 21023 2.23 x 107398 t0 1.79 x 10308
Double Extended Precision 80 64 2716382 1 916383 3.37 x 10749%2 10 1.18 x 10%9%2
NOTE

Section 4.8., “Real Numbers and Floating-Point Formats’ gives an overview
of the |EEE Standard 754 floating-point formats and defines the termsinteger
bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normal-
ized finite numbers, infinites, and NaNs for each of the three floating-point data types. It also
gives the format for the QNaN floating-point indefinite value. (See Section 4.8.3.7., “QNaN
Floating-Point Indefinite” for a discussion of the use of the QNaN floating-point indefinite
value.)

For the single-precision and double-precision formats, only the fraction part of the significand
is encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized finite
numbers. For the double extended-precision format, the integer is contained in bit 63, and the
most-significant fraction bit is bit 62. Here, the integer is explicitly set to 1 for normalized
numbers, infinities, and NaNs, and to O for zero and denormalized numbers.
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Table 4-3. Floating-Point Number and NaN Encodings
Class Sign Biased Exponent Significand
Integer? Fraction
Positive +00 0 11.11 1 00..00
+Normals 0 11..10 1 11.11
0 00..01 1 00..00
+Denormals 0 00..00 0 11.11
0 00..00 0 00..01
+Zero 0 00..00 0 00..00
Negative -Zero 1 00..00 0 00..00
—-Denormals 1 00..00 0 00..01
1 00..00 0 1111
-Normals 1 00..01 1 00..00
Zi. 11..i0 1 11..i1
—00 1 11..11 1 00..00
NaNs SNaN X 11..11 1 0X..XX?
QNaN X 11..11 1 1X.. XX
QNaN 1 11..11 1 10..00
Floating-Point
Indefinite
Single-Precision: «— 8Bits — «— 23 Bits —
Double-Precision: « 11 Bits — « 52 Bits —
Double Extended-Precision: « 15Bits — «— 63Bits —

NOTES:

1. Integer bit is implied and not stored for single-precision and double-precision formats.

2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.

The exponent of each floating-point data type is encoded in biased format (see Section 4.8.2.2.,
“Biased Exponent”). The biasing constant is 127 for the single-precision format, 1023 for the
double-precision format, and 16,383 for the double extended-precision format.

When storing floating-point valuesin memory, single-precision values are stored in 4 consecu-
tive bytes in memory; double-precision values are stored in 8 consecutive bytes; and double

extended-precision values are stored in 10 consecutive bytes.

The single-precision and doubl e-precision floating-point datatypes are operated on by x87 FPU,
SSE, and SSE2 instructions. The double-extended-precision floating-point format is only oper-
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ated on by the x87 FPU. See Section 11.6.8., “Compatibility of SIMD and x87 FPU Floating-
Point Data Types” for adiscussion of the compatibility of single-precision and double-precision
floating-point data types between the x87 FPU and the SSE and SSE2 extensions.

4.3. POINTER DATA TYPES

Pointers are addresses of locations in memory (see Figure 4-4). The |A-32 architecture defines
two types of pointers. anear pointer (32 bits) and afar pointer (48 bits). A near pointer isa
32-hit offset (also called an effective address) within a segment. Near pointers are used for all
memory references in a flat memory model or for references in a segmented model where the
identity of the segment being accessed is implied. A far pointer is a 48-bit logical address,
consisting of a 16-bit segment selector and a 32-bit offset. Far pointers are used for memory
references in a ssgmented memory model where the identity of a segment being accessed must
be specified explicitly.

Near Pointer
Offset
31 0

Far Pointer or Logical Address

Segment Selector | Offset
47 32 31 0

Figure 4-4. Pointer Data Types

4.4. BIT FIELD DATA TYPE

A bit field (see Figure 4-5) is a contiguous sequence of bits. It can begin at any bit position of
any byte in memory and can contain up to 32 bits.

Bit Field

| |
l» Field Length —4

 Least
Significant
Bit

Figure 4-5. Bit Field Data Type

I 4-7



DATA TYPES Inte|®

4.5. STRING DATA TYPES

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin
at any bit position of any byte and can contain up to 2%2—1 hits. A byte string can contain bytes,
words, or doublewords and can range from zero to 2%2— 1 bytes (4 gigabytes).

4.6. PACKED SIMD DATA TYPES

I A-32 architecture defines and operates on a set of 64-bit and 128-bit packed data type for use
in SIMD operations. These data types consist of fundamental data types (packed bytes, words,
doublewords, and quadwords) and numeric interpretations of fundamental types for use in
packed integer and packed fl oating-point operations.

4.6.1. 64-Bit SIMD Packed Data Types

The 64-bit packed SIMD data types were introduced into the |A-32 architecture in the Intel
MMX technology. They are operated on primarily in the 64-bit MM X registers. The funda-
mental 64-bit packed data types are packed bytes, packed words, and packed doublewords (see
Figure 4-6). When performing numeric SIMD operations on these data typesin MM X registers,
these data types are interpreted as containing byte, word, or doubleword integer values.

Fundamental 64-Bit Packed SIMD Data Types

| | | | | | | | | Packed Bytes
63 0

| | | | | Packed Words

63 0

| | | Packed Doublewords
63 0

64-Bit Packed Integer Data Types

| | | | | | | | | Packed Byte Integers
63 0

| | | | | Packed Word Integers

63 0

| | | Packed Doubleword Integers

63 0

Figure 4-6. 64-Bit Packed SIMD Data Types
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4.6.2. 128-Bit Packed SIMD Data Types

The 128-bit packed SIMD data types were introduced into the |A-32 architecture in the SSE
extensions and extended with the SSE2 extensions. They are operated on primarily in the 128-
bit XMM registers and memory. The fundamental 128-bit packed data types are packed bytes,
packed words, packed doublewords, and packed quadwords (see Figure 4-7). When performing
SIMD operations on these fundamental datatypesin XMM registers, these data types are inter-
preted as containing packed or scalar single-precision floating-point or double-precision
floating-point values, or as containing packed byte, word, doubleword, or quadword integer
values.

Fundamental 128-Bit Packed SIMD Data Types

N N D O A W

127 0

| | | | | | | | | Packed Words

127 0

| | | | | Packed Doublewords
127 0

| | | Packed Quadwords
127 0

128-Bit Packed Floating-Point and Integer Data Types

| | | Packed Single Precision
Floating Point

127 0

| | | Packed Double Precision
Floating Point

127 0

| | | | | | | | | | | | | | | | | Packed Byte Integers

127 0

| | | | | | | | | Packed Word Integers

127 0

| | | | | Packed Doubleword Integers

127 0

| | | Packed Quadword Integers

127 0

Figure 4-7. 128-Bit Packed SIMD Data Types
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4.7. BCD AND PACKED BCD INTEGERS

Binary-coded decimal integers (BCD integers) are unsigned 4-hit integers with valid values
ranging from 0 to 9. 1A-32 architecture defines operations on BCD integers located in one or
more general-purpose registers or in one or more x87 FPU registers (see Figure 4-8).

BCD Integers

7 43 O

Packed BCD Integers

7 43 0

Sign 80-Bit Packed BCD Decimal Integers
[[ x [p17, D16 D15 D14 D13 D12 D11,D10, D9, D8, 6 D7 D6 D5 D4 D3 D2, D1, DO |
7978 7271 0
4 Bits = 1 BCD Digit

Figure 4-8. BCD Data Types

When operating BCD integers in general-purpose registers, the BCD values can be unpacked
(one BCD digit per byte) or packed (two BCD digits per byte). The value of an unpacked BCD
integer is the binary value of the low half-byte (bits O through 3). The high half-byte (bits 4
through 7) can be any value during addition and subtraction, but must be zero during multipli-
cation and division. Packed BCD integers allow two BCD digits to be contained in one byte.
Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, the BCD values are packed in an
80-bit format and referred to as decimal integers. Decimal integers are stored in a 10-byte,
packed BCD format. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The
least-significant digit is contained in the lower half-byte of byte 0 and the most-significant digit
iscontained in the upper half-byte of byte 9. The most significant bit of byte 10 containsthe sign
bit (0 = positive and 1 = negative). (Bits 0 through 6 of byte 10 are don't care hits.) Negative
decimal integers are not stored in two's complement form; they are distinguished from positive
decimal integers only by the sign bit. The range of decimal integers that can be encoded in this
format is-10% + 1to 1018 - 1.

The decimal integer format exists in memory only. When a decimal integer isloaded in an x87
FPU dataregister, it is automatically converted to the double-extended-precision floating-point
format. All decimal integers are exactly representable in double extended-precision format.

Decimal integers are stored in a 10-byte, packed BCD format. Table 4-2 gives the precision and
range of this datatype and Figure 4-8 shows the format. In this format, the first 9 bytes hold 18
BCD digits, 2 digits per byte. The least-significant digit is contained in the lower half-byte of
byte 0 and the most-significant digit is contained in the upper half-byte of byte 9. The most
significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative). (Bits 0 through 6

4-10 I



inteal. DATA TYPES

of byte 10 are don't care bits.) Negative decimal integers are not stored in two's complement
form; they are distinguished from positive decimal integers only by the sign bit.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Table 4-4. Packed Decimal Integer Encodings

Magnitude

Class | Sign digit | digit | digit | digit | .. | digit
Positive

Largest 0 0000000 1001 1001 1001 1001 1001
Smallest 0 0000000 0000 0000 0000 0000 0001
Zero 0 0000000 0000 0000 0000 0000 0000
Negative

Zero 1 0000000 0000 0000 0000 0000 0000
Smallest 1 0000000 0000 0000 0000 0000 0001
Largest 1 0000000 1001 1001 1001 1001 1001
Packed 1 1111111 1111 1111 1100 0000 . 0000
BCD
Integer
Indefinite

«— 1byte — «— 9bytes —

The decimal integer format exists in memory only. When a decimal integer isloaded in a data
register in the x87 FPU, it is automatically converted to the double extended-precision format.
All decimal integers are exactly representable in double extended-precision format.

The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by the
FBSTP instruction in response to a masked floating-point invalid-operation exception.
Attempting to load this value with the FBLD instruction produces an undefined result.
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4.8. REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in the x87 FPU
and the SSE and SSE2 floating-point instructions. It also introduces terms such as normalized
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are
already familiar with floating-point processing techniques and the IEEE Standard 754 for
Binary Floating-Point Arithmetic may wish to skip this section.

4.8.1. Real Number System

Asshown in Figure 4-9, the real-number system comprises the continuum of real numbers from
minus infinity (—co) to plusinfinity (+).

Because the size and number of registers that any computer can have islimited, only a subset of
the real-number continuum can be used in real-number (floating-point) calculations. As shown
at the bottom of Figure 4-9, the subset of real numbersthat the | A-32 architecture supportsrepre-
sents an approximation of the real number system. The range and precision of this real-number
subset is determined by the IEEE Standard 754 floating-point formats.

4.8.2. Floating-Point Format

To increase the speed and efficiency of real-number computations, computers and microproces-
sors typically represent real numbers in a binary floating-point format. In this format, a rea
number has three parts: a sign, asignificand, and an exponent (see Figure 4-10).

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand hastwo parts: a 1-bit binary integer (also referred to as the J-hit) and a binary
fraction. The integer-bit is often not represented, but instead is an implied value. The exponent
isabinary integer that represents the base-2 power that the significand is multiplied by.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE
Standard 754 floating-point format. The table lists a progression of real number notations that
leads to the single-precision, 32-hit floating-point format. In this format, the significand is
normalized (see Section 4.8.2.1., “Normalized Numbers') and the exponent is biased (see
Section 4.8.2.2., “Biased Exponent”). For the single-precision floating-point format, the biasing
constant is +127.
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Binary Real Number System

-100 -10 -1 0 1 10 100
| |

[ T |
< T T T T T T T e

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format
-100 -10 -1 0 1 10 100

S

"'T_ 10.0000000000000000000000

1.11111111111111111111111
Precision|<—24 Binary Digits ——»

Numbers within this range
cannot be represented.

Figure 4-9. Binary Real Number System

Sign

H Exponent ‘ Significand ‘

=

‘ ‘ Fraction ‘

Integer or J-Bit -/4

Figure 4-10. Binary Floating-Point Format
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Table 4-5. Real and Floating-Point Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1.78125E,,2
Scientific Binary 1.0110010001E,111
Scientific Binary 1.0110010001E,10000110
(Biased Exponent)
IEEE Single-Precision Format | Sign Biased Exponent Normalized Significand
0 10000110 01100100010000000000000
A1 (implied)

4.8.2.1. NORMALIZED NUMBERS

In most cases, floating-point numbers are encoded in normalized form. This means that except
for zero, the significand is always made up of an integer of 1 and the following fraction:

Lfff.ff

For valueslessthan 1, leading zeros are eliminated. (For each leading zero eliminated, the expo-
nent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of anormalized significand that represents areal number between 1 and 2 and an expo-
nent that specifies the number’s binary point.

4.8.2.2. BIASED EXPONENT

InthelA-32 architecture, the exponents of fl oating-point numbers are encoded in a biased form.
Thismeans that a constant is added to the actual exponent so that the biased exponent is always
apositive number. The value of the biasing constant depends on the number of bits available for
representing exponents in the floating-point format being used. The biasing constant is chosen
so that the smallest normalized number can be reciprocated without overflow.

(See Section 4.2.2., “Floating-Point Data Types’ for alist of the biasing constants that the | A-
32 architecture uses for the various sizes of floating-point data-types.)

4.8.3. Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the |EEE Standard 754 floating-
point format. These numbers and values are generally divided into the following classes:

® Signed zeros.
®  Denormalized finite numbers.
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® Normalized finite numbers.

® Signedinfinities.

® NaNs.

® Indefinite numbers.

(Theterm NaN stands for “Not a Number.”)

Figure 4-11 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the | EEE single-precision floating-point
format. Theterm “S” indicates the sign bit, “E” the biased exponent, and “Sig” the significand.
The exponent values are given in decimal. The integer bit is shown for the significands, even
though the integer bit isimplied in single-precision floating-point format.

NaN NaN
—-Denormalized Finite  +Denormalized Finite
—Ioo| —Normalized Finite I\ _IOI+OI /I +Normalized Finite T)ol

Real Number and NaN Encodings For 32-Bit Floating-Point Format

S E Sig! S E Sig*
[1] o [ o.000.. |-0 +0[o] o [ o0.000.. ]
|1| 0 | 0.XXX_. 2 | —Eﬁ]?t%rmalized +Denormz'a:|iiﬁieig |0| 0 | 0. XXX_2 |
[1]1-.254] 1.xxx.. | “Normalized +Normalized (6T 554T 1XXX... |
[1] 255 | 1.000.. | -co +o0 [0] 255 | 1.000... |
X3 255 | 1.0xX..2 | SNaN SNaN [x3 255 [ 1.0XX..2 |
[x3 255 | 1.1XX.. | QNaN QNaN [xJ 255 [ 1.1XX.. |

NOTES:

1. Integer bit of fraction implied for
single-precision floating-point format.

2. Fraction must be non-zero.

3. Sign bit ignored.

Figure 4-11. Real Numbers and NaNs

An |A-32 processor can operate on and/or return any of these values, depending on the type of
computation being performed. The following sections describe these number and non-number
classes.

4.8.3.1. SIGNED ZEROS

Zero can be represented as a +0 or a—0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
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mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of azero may indicate the direction from which underflow occurred, or it may indicate
the sign of an o« that has been reciprocated.

4.8.3.2. NORMALIZED AND DENORMALIZED FINITE NUMBERS

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The
normalized finite numbers comprise all the non-zero finite values that can be encoded in a
normalized real number format between zero and . In the single-precision floating-point
format shown in Figure 4-11, this group of numbersincludes all the numbers with biased expo-
nents ranging from 1 to 254, (unbiased, the exponent range is from —-126,, to +127,,).

When floating-point numbers become very close to zero, the normalized-number format can no
longer be used to represent the numbers. This is because the range of the exponent is not large
enough to compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbersinthisrangeare
called denormalized (or tiny) numbers. The use of leading zeros with denormalized numbers
allows smaller numbersto be represented. However, this denormalization causes aloss of preci-
sion (the number of significant bitsin the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an 1A-32 processor normally oper-
ates on normalized numbers and produces normalized numbers as results. Denormalized
numbers represent an under flow condition (where, the exact conditions are specified in Section
4.9.1.5., “Numeric Underflow Exception (#U)").

A denormalized number is computed through atechnique called gradual underflow. Table 4-6
givesan example of gradual underflow inthe denormalization process. Here the single-precision
format is being used, so the minimum exponent (unbiased) is —126,,. The true result in this
example requires an exponent of —129,,in order to have a normalized number. Since —-129,,
is beyond the allowable exponent range, the result is denormalized by inserting leading zeros
until the minimum exponent of —126,, is reached.

Table 4-6. Denormalization Process

Operation Sign Exponent* Significand
True Result 0 -129 1.01011100000...00
Denormalize 0 -128 0.10101110000...00
Denormalize 0 -127 0.01010111000...00
Denormalize 0 -126 0.00101011100...00
Denormal Result 0 -126 0.00101011100...00

NOTE:
* Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
azero result.
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The | A-32 architecture deals with denormal values in the following ways:
® |t avoids creating denormal s by normalizing numbers whenever possible.

® |t provides the floating-point underflow exception to permit programmers to detect cases
when denormals are created.

® |t provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for computations.

4.8.3.3. SIGNED INFINITIES

The two infinities, +c0 and —oo, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by asignificand of 1.00...00 (the integer bit may be implied) and the maximum biased exponent
allowed in the specified format (for example, 255, for the single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always inter-
preted in the affine sense; that is, —o is less than any finite number and + is greater than any
finite number. Arithmetic on infinities is always exact. Exceptions are generated only when the
use of an infinity as a source operand constitutes an invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two co numbers may
represent the result of an overflow condition. Here, the normalized result of a computation has
abiased exponent greater than the largest allowable exponent for the selected result format.

4.8.3.4. NANS

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-11, the
encoding space for NaNs in the floating-point formats is shown above the ends of the real
number line. This space includes any value with the maximum allowabl e biased exponent and
anon-zero fraction. (The sign bit isignored for NaNs.)

The 1A-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs
(SNaNs). A QNaN isaNaN with the most significant fraction bit set; an SNaN is a NaN with
the most significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic
operations without signaling an exception. SNaNs generally signal an floating-point invalid-
operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by soft-
ware; that is, the processor never generates an SNaN as aresult of a floating-point operation.

4.8.3.5. OPERATING ON SNANS AND QNANS

When afloating-point operation is performed on an SNaN and/or aQNaN, theresult of the oper-
ation is either aQNaN delivered to the destination operand or the generation of afloating-point
invalid operating exception, depending on the following rules:

®* |If one of the source operands is an SNaN and the floating-point invalid-operating
exception is not masked (see Section 4.9.1.1., “Invalid Operation Exception (#)"), the a
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floating-point invalid-operation exception is signaled and no result is stored in the
destination operand.

* |f either or both of the source operands are NaNs and floating-point invalid-operation
exception is masked, the result is as shown in Table 4-7. When an SNaN is converted to a
QNaN, the conversion is handled by setting the most-significant fraction bit of the SNaN
to 1. Also, when one of the source operands is an SNaN, the floating-point invalid-
operation exception flag it set. Note that for some combinations of source operands, the
result is different for the x87 FPU operations and for the SSE or SSE2 operations.

Table 4-7. Rules for Handling NaNs
Source Operands Result'

SNaN and QNaN. x87 FPU—QNaN source operand.

SSE or SSE2—First operand (if this operand is an
SNaN, it is converted to a QNaN)

Two SNaNs. x87 FPU—SNaN source operand with the larger
significand, converted into a QNaN.

SSE or SSE2—First operand converted to a QNaN.

Two QNaNs. x87 FPU—QNaN source operand with the larger
significand.

SSE or SSE2—First operand.

SNaN and a floating-point value. SNaN source operand, converted into a QNaN.
QNaN and a floating-point value. QNaN source operand.
SNaN (for instructions that take only one SNaN source operand, converted into a QNaN.
operand)
QNaN (for instructions that take only one QNaN source operand.
operand)

Note:

1t For SSE and SSE2 instructions, the first operand is generally a source operand that becomes the desti-
nation operand.

® When neither of the source operands is a NaN, but the operation generates a floating-point
invalid-operation exception (see Tables 8-10 and 11-1), the result is commonly an SNaN
source operand converted to a QNaN or the QNaN floating-point indefinite value.

Any exceptionsto the behavior described in Table 4-7 are described in Section 8.5.1.2., “Invalid
Arithmetic Operand Exception (#1A)” and Section 11.5.2.1., “Invalid Operation Exception
(#)".

4.8.3.6. USING SNANS AND QNANS IN APPLICATIONS

Except for the rules given at the beginning of Section 4.8.3.4., “NaNs’ for encoding SNaNs and
QNaNs, software isfreeto use the bitsin the significand of aNaN for any purpose. Both SNaNs
and QNaNs can be encoded to carry and store data, such as diagnostic information.
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By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap
to the exception handler. The generality of this approach and the large number of NaN values
that are available provide the sophisticated programmer with a tool that can be applied to a
variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (rea) array
elements. The compiler can preinitialize each array element with asignaling NaN whose signif-
icand contained the index (relative position) of the element. Then, if an application program
attempts to access an element that it had not initialized, it can use the NaN placed there by the
compiler. If theinvalid operation exception is unmasked, an interrupt will occur, and the excep-
tion handler will be invoked. The exception handler can determine which element has been
accessed, since the operand address field of the exception pointer will point to the NaN, and the
NaN will contain the index number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often
contains multiple errors. An exception handler can be written to save diagnostic information in
memory whenever it was invoked. After storing the diagnostic data, it can supply a quiet NaN
astheresult of the erroneousinstruction, and that NaN can point to its associated diagnostic area
in memory. The program will then continue, creating a different NaN for each error. When the
program ends, the NaN results can be used to access the diagnostic data saved at the time the
errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications which use computed results in further computations, an undetected
QNaN can invalidate all subsequent results. Such applications should therefore periodically
check for QNaNs and provide a recovery mechanism to be used if a QNaN result is detected.

4.8.3.7. QNAN FLOATING-POINT INDEFINITE

For the floating-point data type encodings (single-precision, double-precision, and double-
extended-precision), one unique encoding (a QNaN) is reserved for representing the special
value QNaN floating-point indefinite. The x87 FPU and the SSE and SSE2 extensions return
these indefinite values as responses to some masked floating-point exceptions. Table 4-3 shows
the encoding used for the QNaN floating-point indefinite.

4.8.4. Rounding

When performing floating-point operations, the processor produces an infinitely precise
floating-point result in the desti