
mini-SSE-L1-BLAS library:

A fast library for

SDOT,DDOT,SAXPY,DAXPY

operations on x86 processor

Document version v1.01.

The mini-SSE-L1-BLAS Library is providing the basic Level 1 BLAS operations on vectors. In
particular, the four functions: SDOT, DDOT, SAXPY, DAXPY were deeply hand-optimized.
The library is composed of only 2 small files (a ”.cpp” and a ”.h” file). Inclusion of the library
inside your own projects is easy. It is cross-platform. It compiles transparently on both Visual
Studio .NET and GCC. A FORTRAN interface is also available. Optimization includes inline
SSE and SSE2 assembly code inserted inside the C/C++ code, loop unrolling. Assembly code
instructions are ordered to increase parallel execution of instructions, to ease branch prediction,
to reduce dependency links between two close instructions. Software Prefetch instructions were
very roughly investigated but were not included in the library. The functions are also imple-
mented as C++ macros to remove the function calls overhead.

SDOT and DDOT operations compute dot vector products (r := xty with x, y ∈ <n). SAXPY
and DAXPY operations compute y := α ∗ x + y (x, y ∈ <n, α ∈ <). The S or D prefix on
SDOT,DDOT,SAXPY,DAXPY operations means that the operations are either performed on
float’s (S) or on double’s (D).

You can download here the miniSSEL1BLAS Library:

http://www.applied-mathematics.net/miniSSEL1BLAS/miniSSEL1BLAS.html

A complete User’s guide for the FORTRAN interface and for the C++ interface is given re-
spectively in section 1.3 and section 1.4. If you are in a hurry, you can skip all the other sections
and only read the user’s guide.

The remaining of this section is about the different code optimizations that were used for the
development of the library. Section 1.2 is about experimental benchmark results. The experi-
mental results show that the computing time can sometime be divided by four compared to a
standard C implementation. The last section (1.6) gives some references and useful links.

1

2

Here is some background details about the different code optimizations that have been per-
formed:

• As a general rule of thumb, when optimizing code you should never try to guess the best
strategy based on some empirical reasoning. Always validate your choices using experi-
mental benchmarks results only.

• SSE and SSE2 are a set of assembly-level instructions that allows to compute 4 products
of float’s or 2 products of double’s in, essentially, the same time as 1 product using the
classical set of assembly-level instructions. This normally leads to a reduction of the
computation time for a SDOT or SAXPY operation to 25% of a non-optimized classical
implementation. For a DDOT or DAXPY operation the computing time should be reduced
to 50% . Unfortunately, the real bottleneck for high performances is memory access. This
means that we cannot usually obtain such good performance but still we can get close
enough.

• Let’s consider this small C code:

int i=n;

double s=0.0;

while (i--) s+=a[i]*b[i];

This code computes the dot-product of 2 vectors of length n: a and b. To reduce compu-
tation time you can unroll (8 times) the main loop:

int i=n>>3, j=0, k=n&7;

double s=0.0;

while (i--)

{

s+=a[j]*b[j];

s+=a[j+1]*b[j+1];

s+=a[j+2]*b[j+2];

s+=a[j+3]*b[j+3];

s+=a[j+4]*b[j+4];

s+=a[j+5]*b[j+5];

s+=a[j+6]*b[j+6];

s+=a[j+7]*b[j+7];

j+=8;

}

switch(k)

{

case 7: s+=a[j]*b[j]; j++;

case 6: s+=a[j]*b[j]; j++;

case 5: s+=a[j]*b[j]; j++;

case 4: s+=a[j]*b[j]; j++;

case 3: s+=a[j]*b[j]; j++;

case 2: s+=a[j]*b[j]; j++;

case 1: s+=a[j]*b[j]; j++;

}

3

The second code is faster because it performs the end-of-loop test ”if (i==0)” once every
height multiplies.

• Let’s consider this small C code (we assume that n >= 2 and n%2 = 0):

int i=0;

register double at,bt,st,s=0.0;

while (i<n)

{

at=a[i]; bt=b[i]; st=at*bt; s+=st;

at=a[i+1]; bt=b[i+1]; st=at*bt; s+=st;

i+=2;

}

To reduce computation time you can re-order the instruction inside the main loop:

int i=0;

register double at,bt,st,s=0.0;

n-=2;

bt=b[i];

while (i<n)

{

at=a[i]; st=at*bt; bt=b[i+1]; s+=st;

at=a[i+1]; st=at*bt; bt=b[i+3]; s+=st;

i+=2;

}

s+= a[i] * bt +

a[i+1] * b[i+1];

The second code is faster because it allows parallel execution of instructions. While the
arithmetic-unit of the processor is busy computing ”st=at*bt” the memory-access-unit
of the processor can already performs ”bt=b[i+1]”. This is called ”parallel execution”
because the two units are working in parallel. Unfortunately, in our example, the next
instruction (after ”bt=b[i+1]”) is ”s+=st”. To execute this instruction we must wait until
the multiplication ”st=at*bt” is finished, loosing some precious time. In other words, there
is a ”dependency link” between the instructions ”st=at*bt” and ”s+=st”. We should re-
order the instructions to remove those ”dependency link” to increase parallel execution.

• Let’s consider again the unrolled dot product:

int i=n>>3, j=0, k=n&7;

double s=0.0;

while (i--)

{

s+=a[j]*b[j];

s+=a[j+1]*b[j+1];

s+=a[j+2]*b[j+2];

s+=a[j+3]*b[j+3];

s+=a[j+4]*b[j+4];

4

s+=a[j+5]*b[j+5];

s+=a[j+6]*b[j+6];

s+=a[j+7]*b[j+7];

j+=8;

}

switch(k)

{

case 7: s+=a[j]*b[j]; j++;

case 6: s+=a[j]*b[j]; j++;

case 5: s+=a[j]*b[j]; j++;

case 4: s+=a[j]*b[j]; j++;

case 3: s+=a[j]*b[j]; j++;

case 2: s+=a[j]*b[j]; j++;

case 1: s+=a[j]*b[j]; j++;

}

There are different ways to implement this ”switch instruction” in assembler:

1. CHOICE 1:

k=n&7;

goto JUMP_TABLE[k];

JUMP_TABLE[7]: s+=a[j]*b[j]; j++;

JUMP_TABLE[6]: s+=a[j]*b[j]; j++;

JUMP_TABLE[5]: s+=a[j]*b[j]; j++;

JUMP_TABLE[4]: s+=a[j]*b[j]; j++;

JUMP_TABLE[3]: s+=a[j]*b[j]; j++;

JUMP_TABLE[2]: s+=a[j]*b[j]; j++;

JUMP_TABLE[1]: s+=a[j]*b[j]; j++;

JUMP_TABLE[0]:

Note that the C code used here will not actually compile: It’s just to have a general
idea of what is possible in assembler.

2. CHOICE 2:

k=n&7;

if (k)

{

s+=a[j]*b[j]; j++; k--;

if (k)

{

s+=a[j]*b[j]; j++; k--;

if (k)

{

s+=a[j]*b[j]; j++; k--;

if (k)

{

s+=a[j]*b[j]; j++; k--;

if (k)

5

{

s+=a[j]*b[j]; j++; k--;

if (k)

{

s+=a[j]*b[j]; j++; k--;

if (k)

{

s+=a[j]*b[j]; j++;

}

}

}

}

}

}

}

3. CHOICE 3:

k=n&7;

if (k)

{

s+=a[j]*b[j];

if (k>3)

{

s+=a[j+1]*b[j+1];

s+=a[j+2]*b[j+2];

s+=a[j+3]*b[j+3];

if (k>5)

{

s+=a[j+4]*b[j+4];

s+=a[j+5]*b[j+5];

if (k==7) s+=a[j+6]*b[j+6];

} else

{

if (k==5) s+=a[j+4]*b[j+4];

}

} else

{

if (k==3)

{

s+=a[j+1]*b[j+1];

s+=a[j+2]*b[j+2];

} else

{

if (k==2)

{

s+=a[j+1]*b[j+1];

}

6

}

}

j+=k;

}

4. CHOICE 4:

k=n&7;

double ss=0.0;

goto JUMP_TABLE[k];

JUMP_TABLE[7]: s +=a[j+6]*b[j+6];

JUMP_TABLE[6]: ss+=a[j+5]*b[j+5];

JUMP_TABLE[5]: s +=a[j+4]*b[j+4];

JUMP_TABLE[4]: ss+=a[j+3]*b[j+3];

JUMP_TABLE[3]: s +=a[j+2]*b[j+2];

JUMP_TABLE[2]: ss+=a[j+1]*b[j+1];

JUMP_TABLE[1]: s +=a[j]*b[j];

j+=k;

s+=ss;

JUMP_TABLE[0]:

All the compilers will use either CHOICE 1 or CHOICE 2. In particular, CHOICE 1
seems very promising because the processor has no test (no ”if” instruction) to perform.

As previously mentioned, the processor is always trying to execute instructions in parallel.
This means that while it is processing the current instruction it’s already preparing and
executing instruction ”ahead”. When the processor sees a GOTO or JUMP it should be
able to guess where it will go using a technique called ”branch prediction”. A correct
guess allows to prepare ”ahead” the execution of instructions. A wrong guess will cause
a major stall in the pipeline of instructions. Recovering from this pipeline stall is very
time-consuming.

CHOICE 3 is superior to CHOICE 2 because it involves less tests. CHOICE 4 is superior
to CHOICE 1 because there are less dependency between the instructions. CHOICE 3 and
CHOICE 4 were both implemented. Benchmark results indicates that CHOICE 3 is the
fastest. CHOICE 3 was thus thoroughly used inside the library. It appears that the only
jump performed in CHOICE 4 is harder to predict than all the small jumps performed in
CHOICE 3.

• Variables stored in memory are slow to access. This is why there are two levels of cache on
x86 processors. The following table summarizes the time required to read data depending
on their location:

1.2. EXPERIMENTAL RESULTS 7

Location of Data Read time

L1 < 3 nS
L2 < 10 nS

RAM
< 100 nS assuming no page page misses plus
possible delays to write back a dirty cache line

Disk 10+ milliseconds
Network Disk 100 mS to tens of seconds

The objective of the Prefetch instructions is to load in advance some data in the L1 or
L2 cache to decrease the time needed later to read these data. The Prefetch instruction
takes as parameter a memory address. The data at this address are copied into the cache.
This parameter is difficult to tune. Some preliminary results show that the usage of the
Prefetch instruction inside the SDOT, DDOT, SAXPY, DAXPY functions did not lead to
any speed increase (on the constrary). I think that more tuning of the Prefetch parameters
should be performed. Prefetch instructions are thus currently not used.

1.2 Experimental results

All the tests were performed on the same computer: an INTEL CENTRINO 1.7 GHz with 1GB
RAM (DELL inspiron 8600).

All the code optimizations were validated against other strategies using the test benchmark
described in this section.

Table 1 displays the time needed (in milliseconds), to process 5000000 calls to the SDOT, DDOT,
SAXPY, DAXPY functions on vectors of dimension 200. The vectors are filled with random
numbers in [−500 500]. The percentage in the last column shows the relative time compared
to the time of the first column.

function
Standard C code
compiled with

MVS.NET

Standard C code
compiled with

Intel compiler 7.1
on Windows XP

Standard C code
compiled with

GCC 3.4
on Linux

miniSSEL1BLAS
Library

SDOT 2984 3217 2964 867 (29.05 %)
DDOT 2938 3130 2963 1501 (51.09 %)
SAXPY 2626 3192 3305 929 (35.38 %)
DAXPY 2666 3173 3290 1484 (55.66 %)

Table 1: Timing results (vector dimension=200; 5000000 calls)

The speed of the library is independent of the compiler and of the operating system since it’s
written directly in assembler. This is why the performance of the library is reported only once
for all compilers and operating systems.

On this special benchmark, The INTEL compiler and the GCC meta-compiler are slower than
the Visual Studio .NET compiler. Indeed the assembly code generated by the Visual Studio

8

.NET compiler is from far cleaner than the other assembly code generated by the other compil-
ers.

The SDOT and DDOT functions are close to the theoretical lower boundary of, respectively,
25 % and 50% of running time compared to the standard C implementation. The SAXPY and
DAXPY functions are a little bit slower than the SDOT and DDOT functions because they are
accessing memory more heavily. Table 2 shows other results with larger vector dimensions.

function
Standard C code
compiled with

MVS.NET

Standard C code
compiled with

Intel compiler 7.1
on Windows XP

Standard C code
compiled with

GCC 3.4
on Linux

miniSSEL1BLAS
Library

SDOT 2480 2823 2683 947 (38.19 %)
DDOT 2549 2784 2759 1896 (74.38 %)
SAXPY 2425 2707 2888 1120 (46.19 %)
DAXPY 2826 2965 3054 2255 (79.79 %)

Table 2: Timing results (vector dimension=20000; 50000 calls)

Table 2 indicates that, for larger vector sizes, the memory bottleneck becomes more prominent.
Obviously, a correct Prefechtching should help in this case.

Annexe

The standard C code implementation of SDOT,DDOT,SAXPY,DAXPY that is used in the
experimental results is:

double ddot_C(int n, double *x,double *y)

{ double s=0.0; while (n--) { s+=*(x++) * *(y++); }; return s; }

float sdot_C(int n, float *x,float *y)

{ float s=0.0; while (n--) { s+=*(x++) * *(y++); }; return s; }

void saxpy_C(int n, float a,float *x, float *y)

{ while (n--) *(y++)+= a * *(x++); }

void daxpy_C(int n, double a,double *x, double *y)

{ while (n--) *(y++)+= a * *(x++); }

1.3 User’s guide for the FORTRAN interface to the library

There is one example inside the ZIP file that demonstrates the usage of the FORTRAN interface
to the library. The example is for a UNIX fortran compiler (f77/g77) and is makefile-based. The
miniSSEL1BLAS library is composed by only three files: miniSSEL1BLAS.cpp,miniSSEL1BLAS.hpp
and miniSSEL1BLAS.h. Basically, to use the library in your own project, you must generate an
object file ”miniSSEL1BLAS.o” using the command:

1.3. USER’S GUIDE FOR THE FORTRAN INTERFACE TO THE LIBRARY 9

g++ -O -c miniSSEL1BLAS.cpp

Thereafter, you can simply add the object file ”miniSSEL1BLAS.o” to the list of FORTRAN ”.f”
file that are inside your project. Usually, you obtain something like:

f77 -o <name_of_the_executable> <list_of_fortran_.f_files> miniSSEL1BLAS.o

The FORTRAN interface implements the following FORTRAN functions:

integer function hasSSE() // out=1 if SSE supported,

// out=0 otherwise

integer function hasSSE2() // out=1 if SSE2 supported,

// out=0 otherwise

subroutine scopy (n, sx,sy) // y[i]=x[i] for_all_i

subroutine dcopy (n, dx,dy)

subroutine saxpy (n,sa,sx,sy) // y[i]=a*y[i]+y[i] for_all_i

subroutine saxpyUA (n,sa,sx,sy)

subroutine daxpy (n,da,dx,dy)

subroutine daxpyUA (n,da,dx,dy)

subroutine sscale (n,sa,sx) // x[i]=a*x[i] for_all_i

subroutine dscale (n,da,dx)

subroutine sscaleUA (n,sa,sx)

subroutine dscaleUA (n,da,dx)

real function sdot (n, sx,sy) // out = sum_over_i x[i]*y[i]

real function sdotUA (n, sx,sy)

double precision function ddot (n, dx,dy)

double precision function ddotUA (n, dx,dy)

real function ssquare (n, sx) // out = sum_over_i x[i]**2

real function ssquareUA(n, sx)

double precision function dsquare (n, dx)

double precision function dsquareUA(n, dx)

real function snrm2 (n, sx) // out = sqrt(square(n,x)/n)

real function snrm2UA (n, sx)

double precision function dnrm2 (n, dx)

double precision function dnrm2UA (n, dx)

real function sasum (n, sx) // out = sum_over_i fabs(x[i])

real function sasumUA (n, sx)

double precision function dasum (n, dx)

double precision function dasumUA (n, dx)

real function smin (n, sx) // out = min_for_all_i x[i]

real function sminUA (n, sx)

10

double precision function dmin (n, dx)

double precision function dminUA (n, dx)

real function smax (n, sx) // out = max_for_all_i x[i]

real function smaxUA (n, sx)

double precision function dmax (n, dx)

double precision function dmaxUA (n, dx)

subroutine sswap (n, sx,sy) // SWAP(x[i],y[i]) for_all_i

subroutine dswap (n, dx,dy)

subroutine sset (n,sa,sx) // x[i]=a for_all_i

subroutine dset (n,da,dx)

The data type of the arguments are:

integer n

real sx(*),sy(*),sa,sc,ss

double precision dx(*),dy(*),da,dc,ds

Six additional functions/subroutines are provided in order to meet the L1 BLAS requirements.
WARNING: these functions are NOT optimized and are thus relatively slow:

integer function suiamax(n,sx) // out = index i of the maximum

integer function duiamax(n,dx) // of fabs(x[i])

subroutine srot (sx,sy,sc,ss) // apply a 2D rotation(c,s) on all

subroutine drot (dx,dy,dc,ds) // the 2D points (x[i],[i])

subroutine srotg (sa,sb,sc,ss) // compute a 2D rotation

subroutine drotg (da,db,dc,ds)

The data type of the arguments are:

integer n

real sx(*),sy(*)sa,sb,sc,ss

double precision dx(*),dy(*),da,db,dc,ds

Before using the Level 1 BLAS functions, you should check if the SSE set (or SSE2 set) of in-
structions is supported by your processor. The library provides the function ”hasSSE” (and the
function ”hasSSE2”) that returns one if SSE (respectively SSE2) is suppported. Operations in
single precision require SSE support only. Operations in double precision require SSE2 support.

The memory allocation of all the vector arrays given as parameters to the LEVEL 1 BLAS
FUNCTIONS must be 32 bytes larger than the minimum required size. For performance reason
the axpy, dot, square, nrm2, asum functions are accessing all the vectors 32 bytes beyond the
number n of elements inside the vector.

All the vector arrays given as parameters to the LEVEL 1 BLAS FUNCTIONS must start on a
memory address that is a multiple of 16 (this is called 16-byte alignment). By default, fortran
compilers (g77) always allocates arrays with correct alignment. This means that you can easily
do:

1.4. USER’S GUIDE FOR THE C++ INTERFACE TO THE LIBRARY 11

int offset,i,n

real sx(100), sy(100), sr

double precision dx(100), dy(100), dr

sr=sdot(n,sx,sy)

dr=ddot(n,dx,dy)

However, the next example will work only if ((offset − 1)%4) = 0 (The ”%” stands for the
modulo operation):

sdot(n,sx(offset),sy(offset+i*4))

The next example will only work if ((offset − 1)%2) = 0:

ddot(n,dx(offset),dy(offset+i*2))

If you need to work on UnAligned arrays, you can use the LEVEL 1 BLAS FUNCTIONS that
have the UA suffix. The UA suffix inside the name of the function stands for ”UnAligned” memory
address. The UA version of the function is slower but the vector arrays parameters can be un-
aligned. However the un-alignement must be the same for x and for y. In other word, the
following example works for any value of the variable ”offset”:

int offset,i,n

real s(*)

double precision d(*)

sdotUA(n,s(offset),s(offset+i*4))

ddotUA(n,d(offset),d(offset+i*2))

The functions scopy, dcopy, sswap, dswap, sset, dset, suiamax, duiamax, srot, drot,

srotg, drotg have no UnAligned equivalent. The vector array parameters given to these func-
tions can be UnAligned.

1.4 User’s guide for the C++ interface to the library

The library is composed by two files: miniSSEL1BLAS.cpp, miniSSEL1BLAS.hpp and miniSSEL1BLAS.h.
These are the only 3 files that you need to include into your own projects to be able to use the
library.

There are two examples to demonstrate the usage of the C++ interface to the library:

1. a Visual Studio .NET example (.sln)

2. a GCC example (makefile based)

The examples are the benchmarks used in section 1.2.

Before using the Level1 BLAS functions, you should check if the SSE set (or SSE2 set) of instruc-
tions is supported by your processor. The library provides the global boolean variable ”hasSSE”
(and the global variable ”hasSSE2”) that is true if SSE (respectively SSE2) is supported. Op-
erations on float require SSE support only. Operations on double require SSE2 support.

12

All the vector arrays given as parameters to the LEVEL 1 BLAS FUNCTIONS must start on
a memory address that is a multiple of 16 (this is called 16-byte alignment). When using the
classical C ”malloc” function, only a 8-byte alignment is assured. You must use the following
memory allocations functions to be assured of correct alignment (these functions are part of the
miniSSEL1BLAS library):

void *mallocAligned(unsigned long n); // malloc aligned on 16 byte boundaries

void freeAligned(void *t); // free the aligned allocation

Let’s consider this small C code:

int i= ...any number...

float *f=(float*)mallocAligned(...any number...),

*fA=f+i*4;

double *d=(double*)mallocAligned(...any number...),

*dA=d+i*2;

You can use the vector arrays f,fA,d,dA inside the Level1 BLAS functions because all these
arrays are correctly aligned.

The memory allocation of all the vector arrays given as parameters to the LEVEL 1 BLAS
FUNCTIONS must be 32 bytes larger than the minimum required size. For performance reason
the axpy, dot, square, nrm2, asum functions are accessing all the vectors 32 bytes beyond the
number n of elements inside the vector. In the following code, the vectors f1, f2, d3, d4 (of size
respectively n1, n2, n3, n4) are correctly allocated:

float *f1=(float *)mallocAligned((n1+n2)*sizeof(float)+32),*f2=f1+n1;

double *d3=(double*)mallocAligned((n3+n4)*sizeof(double)+32),*d4=d3+n3;

The LEVEL 1 BLAS functions are available as standard C++ functions as defined below.

float dot (int n, float *x, float *y); // out = sum_over_i x[i]*y[i]

double dot (int n, double *x, double *y);

void axpy (int n, float a, float *x, float *y); // y[i]+=a*x[i] for_all_i

void axpy (int n, double a, double *x, double *y);

void vcopy (int n, float *x, float *y); // y[i]=x[i] for_all_i

void vcopy (int n, double *x, double *y);

void vscale (int n, float a, float *x); // x[i]*=a for_all_i

void vscale (int n, double a, double *x);

float asum (int n, float *x); // out = sum_over_i fabs(x[i])

double asum (int n, double *x);

float square (int n, float *x); // out = sum_over_i x[i]**2

double square (int n, double *x);

float nrm2 (int n, float *x); // out = sqrt(square(n,x)/n)

double nrm2 (int n, double *x);

float vmin (int n, float *x); // out = min_for_all_i x[i]

double vmin (int n, double *x);

float vmax (int n, float *x); // out = max_for_all_i x[i]

double vmax (int n, double *x);

void vswap (int n, float *x, float *y); // SWAP(x[i],y[i]) for_all_i

1.4. USER’S GUIDE FOR THE C++ INTERFACE TO THE LIBRARY 13

void vswap (int n, double *x, double *y);

void vset (int n, float a, float *x); // x[i]=a for_all_i

void vset (int n, double a, double *x);

Six additional functions/subroutines are provided in order to meet the L1 BLAS requirements.
WARNING: these functions are NOT optimized and thus are relatively slow:

int uiamax(int n, double *x); // out = index i of the

int uiamax(int n, float *x); // maximum of fabs(x[i])

void rot (int *n, float *x, float *y, float c,float s); // apply a 2D rotation(c,s)

void rot (int *n, double *x, double *y, double c,double s); // on all the 2D points

// (x[i],[i])

void rotg (float *a, float *b, float *c,float *s); // compute a 2D rotation

void rotg (double *a, double *b, double *c,double *s);

The usage is straightforward as soon as the vector arrays x and y are correctly aligned. If the
arrays x and y are not correctly aligned, you can still use:

float dotUA (int n, float *x, float *y);

double dotUA (int n, double *x, double *y);

void axpyUA (int n, float a, float *x, float *y);

void axpyUA (int n, double a, double *x, double *y);

void vscaleUA(int n, float a, float *x);

void vscaleUA(int n, double a, double *x);

float asumUA (int n, float *x);

double asumUA (int n, double *x);

float squareUA(int n, float *x);

double squareUA(int n, double *x);

float nrm2UA (int n, float *x);

double nrm2UA (int n, double *x);

float vminUA (int n, float *x);

double vminUA (int n, double *x);

float vmaxUA (int n, float *x);

double vmaxUA (int n, double *x);

The suffix ”UA” stands for ”Un-Aligned”. The UnAligned versions of the functions is slower.
Furthermore, the un-alignement must be the same for x and for y: We must have (x%16) =
(y%16). The ”%” sign is the modulo operator. In other words, we can have:

int i;

float *f=(float *)malloc(...); // f is not aligned

double *d=(double*)malloc(...); // d is not aligned

...

sdotUA(n,f,f+i*4); // f is not aligned

ddotUA(n,d,d+i*2); // d is not aligned

In opposition, we cannot have:

sdot(n,f,f+i*4); // f is not aligned

ddot(n,d,d+i*2); // d is not aligned

14

The functions vcopy, vswap, vset, uiamax, rot, rotg have no UnAligned equivalent. The
vector array parameters given to these functions can be UnAligned.

Some LEVEL 1 BLAS functions are also available as C++ MACRO’s:

unsigned int n;

float *xf,*yf,af,rf; // xf,yf are correctly aligned.

double *xd,*yd,ad,rd; // xd,yd are correctly aligned.

SDOT_SSE (A,n, xf,yf,rf) // rf = sum_over_i xf[i]*yf[i]

DDOT_SSE2(A,n, xd,yd,rd) // rd = sum_over_i xd[i]*yd[i]

SAXPY_SSE (A,n,af,xf,yf) // yf[i]+=af*xf[i] for_all_i

DAXPY_SSE2(A,n,ad,xd,yd) // yd[i]+=ad*xd[i] for_all_i

SSCALE_SSE (A,n,af,xf) // xf[i]*=af for_all_i

DSCALE_SSE2(A,n,ad,xd) // xd[i]*=ad for_all_i

SSQUARE_SSE (A,n, xf,rf) // rf = sum_over_i xf[i]**2

DSQUARE_SSE2(A,n, xd,rd) // rd = sum_over_i xd[i]**2

SASUM_SSE (A,n, xd,rd) // rf = sum_over_i fabs(xf[i])

DASUM_SSE2(A,n, xf,rd) // rd = sum_over_i fabs(xd[i])

SMIN_SSE (A,n, xf,rf) // rf = min_for_all_i xf[i]

DMIN_SSE2(A,n, xd,rd) // rd = min_for_all_i xd[i]

SMAX_SSE (A,n, xf,rf) // rf = max_for_all_i xf[i]

DMAX_SSE2(A,n, xd,rd) // rd = max_for_all_i xd[i]

float *xfu,*yfu,af; // xfu,yfu can be Un-Aligned.

double *xdu, ,ad; // xdu can be Un-Aligned.

MEMSWAP_MMX (A,n, xfu,yfu) // SWAP(xf[i],yf[i]) for_all_i

SMEMSET_MMX (A,n,af,xfu) // xf[i]=af for_all_i

DMEMSET_MMX (A,n,ad,xdu) // xd[i]=ad for_all_i

The arguments given to the MACRO’s must exactly be of the type specified above. The vector
arrays xf,yf,xd,yd must be correctly aligned. Let’s now look at the first argument (in the
examples above, it’s ”A”). If you try to compile the following code, the compiler will complain
about multiple definition of the same symbols:

...

float *x1,*y1,r1,

*x2,*y2,r2;

...

SDOT_SSE(A,n,x1,y1,r1);

SDOT_SSE(A,n,x2,y2,r2);

...

The following code compiles without any problem:

...

SDOT_SSE(A,n,x1,y1,r1);

SDOT_SSE(B,n,x2,y2,r2);

...

1.5. WHAT PROCESSOR CAN I USE? 15

The first argument of the MACRO must be different at each inclusion of the MACRO inside
the same file.

As you can see, the usage of the MACRO version of the functions is slightly more complex. On
the other hand, you can remove all the function call overheads that are quite time-consuming
on big loops.

1.5 What processor can I use?

All the functions (except vcopy, vset and vswap) are using either SSE or SSE2 intructions.
Operations on floats are performed using SSE instruction sets only. Operations on doubles are
performed using SSE2 instructions.

SSE support is included in:

• Intel R© Pentium III and above

• AMD’s 3DnowTM! Professional technology, which is supported in

– AMD Athlon XP

– AMD Athlon MP

– mobile AMD Athlon 4

– Model 7 AMD DuronTMprocessors.

– AMD opteron, AMD Athlon 64 and above

The oldest AMD processor supporting SSE is an AMD Athlon XP 1500+ at a frequency
of 1333 MHz.

SSE2 support is included in:

• Intel R© Pentium 4, Intel R© Pentium M

• AMD opteron, AMD Athlon 64 and above

1.6 References

To have some good guidelines on how to write optimized loops containing conditional branches,
see the article about the D-loop pattern. I really think that every programmer can gain
some clever insight through this article. That’s a must-read! The article is available at:
http://www.onversity.net/cgi-bin/progarti/art aff.cgi?Eudo=bgteob&P=a0404

The famous BLAS library: BLAS (Basic Linear Algebra Subprograms): http://www.netlib.org/blas/
Quick-Reference to all the BLAS functions: blasqr.pdf.

Here are some ”improved version” of the standard BLAS library:

16

• ATLAS: Automatically Tuned Linear Algebra Software:
http://math-atlas.sourceforge.net/

When you install ATLAS on your computer, it tries to guess what’s the optimum loop-
unrolling. It also tries different orders for the C instructions. This last option is somewhat
redundant with a good compiler. The performances of ATLAS are reported to be very
close to the optimum theoretical performances of the processor when using the classical
set (no SSE, no SSE2) of assembly-level instructions.

Recently, some x86 assembler code was included inside ATLAS. However, the developpers
from ATLAS don’t want to bother the users with such thing like ”memory alignment”.
In most cases, this prevents them to write SSE-optimized functions. Performance of the
SDOT,DDOT,SAXPY,DAXPY functions are thus low compared to the miniSSEL1BLAS
library.

• INTEL IPP: Intel Integrated Performance Primitives
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/index.htm

INTEL is providing an optimized Matrix processing library for its pentium processors.
This is a commercial library. Source code is not available. However free download for
non-commercial applications (and only for the Linux OS) is available.

• LFMat: LFMat is a templatized open source C++ matrix library with storage-compatible
and assembler specializations for 3Dnow!, SSE and SSE2.
http://lfmat.sourceforge.net/

The library should give better performances than the ATLAS library since it is using
SSE/SSE2 sets of instructions. It is however still in beta currently (August 2005).

• Blitz++: Scientific computing C++ library. Uses template techniques to achieve high
performance.
http://oonumerics.org/blitz/

Blitz++ uses templates techniques to know at compile-time, for each user loop, the optimal
unrolling and the optimal order of the instructions. The information needed to optimize
the loops are, basically, the exact size of the vectors and the exact size of the matrices
involved. These sizes are fixed and must be given at compilation time. If this is not a
problem for you, Blitz++ should give even better performances than ATLAS.

• miniSSEL1BLAS library: implements only LEVEL 1 functions on x86 processor with
SSE/SSE2 support.

Many assembly level optimizations have been performed to ensure that peak performances
are attained. It should be faster than any other implementation. And it’s free! Available

1.6. REFERENCES 17

for direct download

http://www.applied-
mathematics.net/miniSSEL1BLAS/miniSSEL1BLAS.html

Drawback: for some functions, the user MUST use 16-bytes-memory-aligned vector arrays.

Some good overall information on MMX/SSE/SSE2 technology:

• A good starting point: http://www.tommesani.com/Docs.html

• IA-32 Intel R© Architecture Software Developer’s Manual Volume 1: Basic Architecture:
24547006.pdf

• IA-32 Intel R© Architecture Software Developer’s Manual Volume 2: Instruction Set Refer-
ence: 24547112.pdf

• Software Optimization Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) Processors:
AMD optimization.pdf

• How to optimize for the Pentium family of microprocessors By Agner Fog, Ph.D. : X86 optimization.pdf

Some information about Prefetching for x86:

• James Mc Parlane’s Blog: x86 Cache Prefetch:
http://blog.metawrap.com/blog/CategoryView,category,Assembler.aspx

• Memory Access is the Key To Speed (The table about access time for the different kind
of memory is coming from this site).
http://www.iseran.com/Win32/CodeForSpeed/memory.html

Some part of the miniSSEL1BLAS library is inspired by code found in the GnuRadio:
http://www.gnu.org/software/gnuradio
These guys know how to code!

I am usually coding in assembler using Intel MASM style. To know how to convert MASM style
assembler code to GCC-gnu style, see Brennan’s Guide to Inline GNU Assembly:
http://www.delorie.com/djgpp/doc/brennan/brennan att inline djgpp.html

Some information about binary storage inside memory of floating point numbers: float-ieee754.pdf

