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Abstract

An approach based on the behaviour of human genome is
developed to efficiently provide a general framework for
optimizing the use of space technology in surveying networks
design. The developed approach attempts to apply the successful
self-organizing principles based upon the biological evolution to
artificial intelligence. It mimics the phenomena of natural
selection observed in nature to achieve its goals by continuously
adapting a population of candidate solutions and improving its
performance over successive generations. The goal of adaptation
is to find the best solution that optimizes the design of a
surveying network based on the use of satellite observations?
This network can be defined as a set of stations, co-ordinated by
a series of sessions formed by placing receivers on the stations.
The problem is to search for the best order for observing these
sessions to give the best observation schedule at minimum cost.
The obtained results prove the effectiveness of the developed
technique in term of solution quality and computational efforts.

Key words: Global Positioning System GPS, Metaheuristics, Artificial Intelligence Al, Genetic Algorithms
GAs.

1. INTRODUCTION

Considerable work has been done through research, field trial, and industry validation to
develop the use of satellite technology for real life applications (Leick, 2004). This paper
deals with the use of Global Positioning System (GPS) to establish surveying networks.
Today, Artificial Intelligence (Al) support is building in satellite technology for the
innovative, and leading researches to make the transition from evaluation to adoption (Saleh,
2003). Genetic Algorithms (GAs), which are based on the biological evolution, have become
an interesting tool for optimizing many complex real-world problems (Goldberg, 1989). To
explain the importance of GAs with regards to the satellite surveying, consider the simple
four stations network of Figure 1 where surveyors with their receivers must visit these stations
according to the initial observation schedule of Table 1. The surveyor knows the traveling
time between stations and wishes to minimize the total time elapsed. The challenge is that “in
what an effective order should the surveyor visit the stations?” To try every possible route
might be feasible in a small network, but search domains for some solutions are very
exhaustive for large networks (Dare and Saleh, 2000). In this case, the GA metaheuristic
technique can be used to find a better solution in much less time. Generally, a metaheuristic
technique is an iterative procedure for quickly and efficiently identifying a high quality
solution for complex real world problems (Osman and Kelly, 1992). More precisely, the aim



of this technique is to search and determine the most suitable solution for optimizing an
objective function (cost, accuracy, time, etc.) over a discrete set of feasible solutions to a
problem to be optimized as shown in Figure 2. In this paper, the GA metaheuristic technique
has been used to minimize the time of observing GPS surveying networks. Although it
probably will not find an optimal solution, but it can quickly find a near optimal solution
which is practically satisfy the essential requirements for designing a GPS surveying network.
GAs were designed to simulate processes in natural systems necessary for evolution;
especially these follow the principles first laid by Charles Darwin of “survival of the fittest”
(Holland, 1970s). In nature it is competition among individuals for scanty resources that
results in the fittest individuals dominating over the weaker ones. To effectively use GAs, a
biological representation (as a genome or chromosome) of a solution to an optimized problem
is needed. Then, GAs create a population of solutions and apply genetic operators (e.g.,
mutation and crossover) to evolve the solutions over successive generations in order to find
the best one(s). This paper introduces GAs and proposes a modified approach based on the
genetic behaviour to search for the best possible schedule to observe a GPS surveying
network. Computational results are reported and concluding remarks are summarized. New
research is outlined.
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Figure 1. Simple four stations network.



Session Receiver X at station | Receiver Y at station Cost
Uab a b 0
Usc a c Che
Uad a d Ccd
Ucb C b Cac"i_cdb
Ued C d Choda
Ubd b d ch

The total cost C(V) >.Ci

Table 1. The initial observation schedule using 2 receivers.

2. FORMULATION OF THE PROBLEM

In this paper, the modified GPS-GA technique constructs from scratch an initial observation
schedule and improves its quality by reducing its total cost over successive iterations. This
total cost represents the sum of the cost of moving receivers between GPS stations. For
example, as shown in Figure 1 and Table 1, at the beginning of the survey there will be no
movements for the receivers when observing the initial session U,, between station a and
station b (i.e., the cost of observing session Uy, is 0). To resume the survey and observe
session Uy, receiver Y is moved from station b to station ¢, while receiver X remains located
at station a (i.e., there is only one movement). The cost of observing session U, is obtained
by Cyc the cost associated with moving receiver Y from station b to station c. To observe
session U,q, receiver Y is moved from station c to station d, while receiver X remains located
at station a (i.e., there is only one movement). The cost of observing session U,q is obtained
by Ce.q the cost associated with moving receiver Y from station ¢ to station d. To observe
session Uy, receiver X is moved from station a to station ¢ and at the same time receiver Y is
moved from station d to station b (i.e., there are two movements). Therefore, the total cost of
observing session U, is obtained by C,. the cost associated with moving receiver X from
station a to station ¢ and by Cgp the cost associated with moving receiver Y from station d to
station b. Similar procedure will be applied to the sessions Uy and Uyg to obtain their
observation costs Cyq and Cg, respectively. At the end of the survey, the total cost Cj to
observe all the required sessions will be calculated and minimized. To formulate the above
survey as an optimization problem, the GPS surveying network problem within the frame of
metaheuristic can briefly defined as follows. A number of receivers (X, Y, etc) are placed at
stations (a, b, c, d, etc) to be co-ordinated by determining sessions (ab, ac, dc, etc) between
these stations. The problem is to search for the best order in which to consecutively observe
these sessions to have the best observation schedule at minimum cost, i.e.,

Minimise :C(V) = Z o

where

C(V) : the total cost of a feasible schedule V.
2Cij : the total cost of carrying out the whole survey and i, j represent stations of the network.
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Figure 2. Global and local optima concept for the search domain of the initial schedule V.

3. THE REAL BEHAVIOUR OF HUMAN GENES

All living organisms consist of cells where each cell has the same set of chromosomes (or
genomes). These chromosomes are strings of genes for defining species which serve as a
model for the whole human organism. These species are blocks of DNA that control a
hereditary characteristic. A gene carries biological information in a form that must be copied
and transmitted from each cell to all its progeny. A gene pool is the collection of all alleles in
a particular population (set of chromosomes). A particular set of genes describing an
individual is called a genotype which contains the information required to construct an
organism. For example, each gene which is a string of bits encodes a particular protein or
basically trait (e.g., color of eyes). Possible setting for a trait (e.g., blue, brown, yellow, etc)
are called alleles (the set of available options for the next generation). The natural evolution is
done through the process of the recombination which takes two original genotypes and
produces new ones by mixing their gene values. This evolutionary process can be carried out
as follows; from an initial generation; select individuals; breed them; mutate their genes using
genetic operators; and insert them into the next generation (Renders and Flasse, 1996). Figure
3 shows the basic pseudo-code procedure to generate a population, while Figure 4 illustrates
this procedure graphically.

The genetic operators (selection and recombination) are used to alter the composition of the
population. Selection is done on the basis of relative fitness and it probabilistically culls from
the population those designs that have relatively low fitness. Recombination, which consists
of mutation and crossover, imitates sexual reproduction by combing genes from two existing
chromosomes (parents) to form two new chromosomes (children) that have a high probability
of having better fitness than their parents. Crossover, as an assorting operator, is applied with
high probability to allow information exchange between candidate solutions. In contrast,
mutation, as in natural systems, is a very low probability operator and just flips a specific bit
in the solution itself to allow new areas of the search domain to be explored. Figure 4
illustrates how crossover mixes information from two parent strings and produces offspring
made up of parts from both parents, while mutation flip the parts of the solution itself
(Chelouah and Siarry, 2000) and (Jaszkiewicz and Kominek, 2003). In summary, selection



concentrates the search process in promising areas of the search domain of the solution, while
crossover and mutation provide new points in this domain to be evaluated (solutions with
further improvements).

create a random population 7 (generation =0);
repeat {
repeat {
father, mother = select (n (generation));
child = recombine (mutate (father), mutate (mother));
add child to n (generationt1);
} until n (generation+1) is full;
generation= generationt1;
}until terminated;

Figure 3. The basic pseudo-code procedure for the classical GA approach.

As can be seen, GA technique will converge over successive iterations towards the global (or
near global) optimum via the genetic operations. It maintains a population of chromosomes
(solutions) with associated fitness values. Parents are selected to mate, on the basis of their
fitness, producing offspring via a reproductive plan. Consequently, highly fit solutions are
given more opportunities to reproduce, so that offspring inherit characteristics from each
parent. Each new successive generation will contain more good genes ‘partial solutions’ than
previous generations. In the next section, these concepts of GAs are modified to the GPS
surveying network to produce an optimal observation schedule (or close to it).
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Figure 4. The evolution process for generating a population.

4. HOW THE DEVELOPED GPS-GA TECHNIQUE WORKS?

The most three important aspects of using genetic ideas in satellite surveying are: definition
and implementation of the genetic representation, definition of the objective function, and
definition and implementation of the genetic operators. The proposed GPS-GA technique is a
computer model in which a population of candidate observation schedules to a GPS surveying



network are stochastically selected, recombined, mutated, and then either eliminated or
retained based on their relative fitness. This can be carried out through four basic steps as
illustrated in Figure 5. In the first step, the initial population of chromosomes (schedules) is
created either randomly or by perturbing an input of the chromosome. In the second step, the
evaluation of the fitness (cost) is computed. The exploitation phase or natural selection is
carried out in the third step. In this step, the chromosomes with the largest fitness scores are
placed one or more times into a mating subset in a semi-random fashion, while chromosomes
with low fitness scores are removed from the population. In the fourth step, the exploration
phase consists of the recombination and mutation operators.
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Figure 5. The general flowchart of the GAs.

These four steps of the Figure 6 can be applied to the evolution process of Figure 4 as
follows. Two chromosomes with length L (schedules with defined number of sessions) from
the initial population are randomly selected to be mated (reproduced). The probability that
these chromosomes are mated is a user-controlled option and is usually set to a high value
(e.g., 0.90). If the parents are allowed to mate, a recombination operator is employed to
exchange genes (sessions) between the two parents (old schedules) to produce two children
(new better quality schedules). If they are not allowed to mate, the parents are placed into the
next generation unchanged. In case the parents are allowed to mate, a crossover point is
selected along the chromosome and the genes up to that point are swapped between the two
parents. The children then replace the parents in the next generation. A mutation operator is
employed to increase the search diversity in the population. The probability that a mutation
will occur is another user-controlled option and is usually set to a low value (e.g., 0.01) so
that good chromosomes are not destroyed. After the exploration phase is carried out, the
population is full of newly created chromosomes and steps two through four of Figure 5 are
repeated. This process continues for a fixed number of generations (iterations). One of the
features that separate GA approach from other optimization approaches is that it optimizes on



a representation of the variables and not the variables themselves. This allows GA technique
to be very flexible and to optimize well in situations where the variables are much different
from each other.
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Figure 6. The binary-coded representation of GA technique.
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Many researchers have noted that one of the most common reasons that GA technique does
not perform well in certain applications is due to the poor choice of representation. The
decision of which this representation should be used is based upon the characteristics of the
variables being optimized. For example, in certain applications such as wavelength selection
in spectroscopy present an easy choice because wavelengths (i.e., genes in the chromosome)
are either used (1) or not used (0). Thus, in a binary-coded GA, each chromosome is a vector
comprised of zeroes and ones with each bit representing a gene as shown in Figure 6. The GA
technique creates a population of solutions then applies crossover and mutation to these
solutions to generate new solutions. In the second stage, a crossover point will be chosen for
each pair and the information after this point will be exchanged between the two solutions of
each pair. In the last stage, the mutation adds some effect of exploration of the phase-domain
to the algorithm by simply changing a one to zero or a zero to a one in the same solution. The
generated “offspring” will include some solutions that are better than the original ones.
Encouraging the best generated solutions and throwing away the worst ones “only the fittest
survive”, the original population keeps improving as a whole and this is called “selective



pressure”. By repeating this process among the better generated solutions, increased
improvements will be gained during the successive generations (Michalewicz, 1996).

[I] INITIALISATION & REPRESENTATION:
(A) FORMULATING the original cost matrix (time travels between stations):
Insert the total number of stations and the estimated cost for each receiver’s move.
(B) CREATING the actual cost matrix (time travels between sessions):
Insert the number of receivers and define the sessions to be observed,
(C) RPERESENTING a potential solution to the observed network.
Encode the solutions as strings over a finite alphabet.
Each string must represent a complete solution to the observed network.
(D) DEFINING the cost function:
(E) DETERMINING the structural elements:
Set the population size #;
Set the initial populations POP and POP’ at times t and t+1 respectively;
Set the f,,;» which is the lowest cost of one schedule through the population POP;
Set the x,,;, which is the schedule that allows obtaining this lowest value of the cost function.
(F) INITIALIZING the control parameters:
Set the crossover probability pCross;
Set the mutation probability pMut;
Set the decreasing law of mutation probability;
Set the stopping criteria.
[II] GENERATION AN INTIAL POPULATION AND ACCEPTANCE STRATEGY
while not termination condition do
(G) DIVERSIFICATION
generation = generation + 1
repeat
Selection
Crossover(pCross)
Mutation(pMut)
until POP' is full
Evaluation of POP’
POP = The new population between (POP, POP")
if (detection of a potential schedule)
then
(H) INTENSIFICATION
"2-opt" Procedure
end while
[(III] THE STOPPING RULES:
(I) TERMINATING the search process:
Stop if the stopping criterion is satisfied; when
Given number of iterations, OR
Maximum number of iterations allowed without improving the best generated schedule.
OTHERWISE.
Go to (E).
(J) DECLARING the output:
Declare the best generated schedule;
Declare the computation time;
END.

Figure 7. The general outline of the developed GPS-GA technique.

The genetic representation of the GPS surveying network problem is a difficult task and the
complexity is how to encode the observation schedules according to the GA strategy. The
encoding cannot simply be the list of sessions in the order that they have to be observed.
Therefore, a sophisticated form of encoding must be used to generate a potential schedule as
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explained in the following section. After the proper representation of the feasible schedule is
carried out, an initial population of this potential schedule is generated and a fitness function
(or objective function) is used to evaluate each schedule in this population (ranking and
scaling). The genetic operators are applied to alter the composition of the generated schedules.
At each time step (or generation), the algorithm produces a population of possible schedules
based on the population from the previous time step. Then, selection functions are used to
select a given number of schedules from the current population according to their cost
(fitness). The common selection method is roulette wheel selection in which the likelihood of
picking a schedule is proportional to the cost of the schedule. The various parameters
(population size, probabilities of applying the genetic operators, etc) will be tuned at each
generation. The general outline of the developed GPS-GA technique is shown in Figure 7.

5. COMPUTATIONAL RESULTS

This section reports on the computational experience of the GAs technique using GPS
networks with known and unknown optimal solutions. The performance of the proposed GA-
GPS technique was evaluated with respect to the schedule quality and computational effort.
The best known solutions were obtained for relatively small GPS surveying networks using
the Traveling Salesman Problem (TSP) algorithm (Dare, 1995). Figure 8 shows a hypothetical
network which has an optimal schedule with a cost of 13 minutes. The data set for this
network consists of four stations, two receivers and six sessions. Table 2 represents the time
travels between stations (i.e., original cost matrix), while Table 3 represents the time travels
between sessions (i.e., actual cost matrix). The initial starting schedule V, with a cost of 17
minutes was randomly chosen and consisted of the following sessions [Vo = Uab, Uac, Usg,
Ubd, Ucd, Uep]. The metaheuristic schedule generated by the developed GPS-GA technique for
this hypothetical network had the same cost as the known optimal schedule (Chelouah and
Saleh, 2003). To illustrate the search methodology of GPS-GA technique, the diversification
and intensification phases are performed during the search process of optimizing the initial
observation schedule of network of Figure 8 as follows:

Cba:5 Ccd:3

Figure 8. Four-station network (from Dare 1995).



Na Np Ne Ny

Na 0O 5 6 3
Ny, 5 0 4 1
No 6 4 0 3
Ne 3 1 3 0

Table 2. Original cost matrix for network in Figure 8 (from Dare, 1995).

Uab ch Ucd Uda Uad Udc Ucb Uba Ubd Udb Uac Uca

Us 0 5 6 4 1 4 6 0 5 3 4 6
U 4 0 4 6 4 1 0 6 3 2 4 6
Ug 6 2 0 3 6 0 1 3 2 3 6 3
U 5 6 3 0 0 6 5 1 35 6 2
Ug 1 5 6 0 0 3 6 S5 5 3 2 6
Uy 3 1 0 6 3 0 2 6 3 2 3 6
Up 6 0 1 4 6 4 0 4 2 3 6 4
Uoa 0 6 4 1 4 6 5 0 3 5 6 4
Usa 4 2 4 3 4 2 4 3 0 0 4 4
U 3 4 2 4 3 4 2 4 0 0 4 4
U 2 5 6 6 3 3 6 6 5 3 0 0
U, 6 6 3 3 6 6 5 2 3 5 0 0

Table 3 Actual cost matrix for network in Figure 8 (from Dare, 1995).

5.1. Diversification Phase consists of the following stages:

5.1.1 [Initialization of the population

In the beginning, an initial schedule Vj is selected and the iterations counter is initially zero,

indicating no moves are performed at the beginning of the search process.
Vo=(Uap)--[4]-->(Uac)--[3]-->(Uaa)--[5]-->(Uba)--[4]-->(Uea)--[1]-->(Ua) = {17}

To produce new schedules and generate the population of V,, the sessions are randomly

exchanged by M permutations (i.e., number of sessions M=6) as shown in Table 4.
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Generated order of sessions cost C(V)

Schedules
Vo Ui Use Uag Ubg Ueg Ucy 17
Vi Ui Uwb Ui Ubg Uea Ugp 13
V) Uip Use Uag Uy Ueg Upg 16
\E Ubd Ui Uad Usp Uca U 15
Vi Uit Uae Uab Upg Uea U 14
VS Ucd Uac Uad Ubd Uab Ucb 24
Vs Ui Ubd Uag Use Ucg Ugp 18
V7 Ucb Uac Uad Ubd Ucd Uab 24
Vs Ui Use Ubg Uag U Uep 20
Vo Ui Uct Uad Upa Use Ugp 27
Vio Ui U Uid Ubs Ueg Ugc 27
Vi Ui Ui Ucd Upg Uag Uey 22
Vi Ui Ui Ua Ucd Ubg Uey 19
Vis Ui Ui Ub Ubd Ueg Uag 22

Table 4. The population size generated from the initial schedule.

5.1.2 Selection

The selection operation is based on the concept of the roulette-wheel selection and can be
explained as follows:

Step 1: calculating the objective function (cost value) for each schedule and detecting the best
values. For example, the first four schedules were selected from Table 4 as follows:

f (V1) =13 (i.e., the cost for V)

f(Va) =16
S (V3) =15
f(Vo=14

Step 2: calculating the “fitness value” which is the difference between the cost of the cheapest
schedule and the other schedule’s values {Fit(V;) = Max(f) - f(Vi)}. The fitness value for each
schedule is replaced by the cumulated fitness which is obtained by adding its fitness to the
previous values. In this method the function fitness Fit of a schedule i depends only on the
value of its objective function f and on the maximum value of the cost function in the
population (Max (f) = 16). For example;

Fit(V;) = Max(f) — f (V1) = 16-13 = 3 (now the new fitness value is 3 for the V)

Fit(V,) = Max(f) —f(V2) = 16-16 =0

Fit(V3) = Max(f) —f(V3) = 16-15=1

Fit(V4) = Max(f) —f(V4) = 16-14 =2

Step 3: calculating the selection probability by mapping the schedules to contiguous segments
of a line. Each schedule segment is equal in size to the associated cumulated fitness. Then, a
random number is generated and the schedule whose segment spans this number is selected.
This process will be repeated until the desired number of schedules is obtained. Suppose that
the resultant population is composed of n=4 schedules and functions of adaptation Fit(j) are
calculated, the probability P; of selection a schedule i is given by the following expression:
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i

_ Fit(vy)

n
2 Fit(V;)
j=1
Schedule || Fitness function Di
\Y 3 3/6=0.5
V, 0 0/6=0
V; 1 1/6=0.17
V, 2 2/6 =0.33
Total 6 1.00

Table 5. Selection probabilities of the population's schedules generated from V.

where Fit(V;) = 6 (the sum of 3 + 0 +1 + 2).

Table 5 gives the probabilities required for selection of each schedule i for a population of
four schedules. As can be seen from this table, the schedule V, does not have any chance to be
retained for the phase of reproduction. This is due to the smallest value of its function
objective which results in a null value of "fitness". Each schedule of the present population
occupies a sector of the roulette-wheel with surface proportional to the adaptation value of

this schedule as shown in Figure 9.

Figure 9. Sectors of the roulette are proportional to the adaptation of the schedules.

draw 2 draw 4 draw 1 draw 3
V3 V4 Vl
0.0 0.17 0.50 1.0

Figure 11. Representation by segments using roulette wheel selection.

The roulette wheel selection is directly derived from the proportional selection in which the
schedules are represented by segments equal to the value of their "fitness" (portion of circle)
as shown in Figure 10. To select a schedule which is likely to be reproduced, a number
ranging between 0 and 1 is randomly drawn and then the fitness value is located. To generate
a population of four schedules, four draws will be carried out as illustrated in Figure 10. For
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example, the schedule V; with best adapted value was drawn 3 times, whereas the schedule
V3 with poor adapted value was not retained for the phase of reproduction.

5.1.3. Crossover

The complexity of applying the GA strategy to the GPS surveying network problem is how to
encode the observation schedules? This complexity is illustrated in the example of Table 6 in
which the crossover operation will not successfully work and this can be explained as follows.
In the old schedules (parents 1 & 2), the crossover point is located after the second session. All
sessions in parent 1 (the first old schedule) which is located before the crossover point have to
be copied in the same order in the child 1 (the first new generated schedule). Then, all sessions
which are located after the crossover point in the parent 2 (the second old schedule) have to be
put in the same order in the child 1. The opposite procedure has to be applied to child 2 (the
second new generated schedule). As can be seen in the child 1 of Table 6 the session Uy, was
repeated twice, while the session U,y was missing. The same problem was occurred for the child
2 in which the session U,g was duplicated, while the session U,, was missing. To generate a
potential schedule without missing or duplicating any session to be observed, a sophisticated
form of encoding was used as follows. This form of encoding should ensure that the selected
sessions to be observed are strictly preserved from the parents (old schedules) to the children
(new generated schedules) during the generation process. This can be carried out by re-copying
each of the four sessions located after the crossing point of the second parent in the new
generated child 1, except if they have already existed. In this case, the child 1 will be completed
without missing or repeating any session as shown in Table 7 (i.e., the child 1 is a new schedule
which contains all the selected sessions to be observed, but in different order). In this table, the
same process was applied to generate the child 2.

Parent 1 Use Ub U Upd U Ug
Parent 2 U Usi U Una U Us
Child 1 Ui Ui Up Upg Ueg Ugp
Child 2 Uw Ui Ui Uyg Ueg Uy

Table 6. Result of the random crossover.

Parent 1 Uac Uawpb Usd Ups U Ug
Parent 2 Uad Use U Upg Ud Ug
Child 1 Ua Uwp Ubds U U Uag
Child 2 Ua Uac Ubds Ua U Uap

Table 7. Correction of the crossover operation.
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5.1.4. Mutation
The rule of mutation operator is to further diverse the search domain of a schedule by
selecting a random session and changing its position in this schedule. Examples of mutation
in case of the GPS surveying network problem are as follows:
1) Exchange between two sessions chosen randomly (e.g., the first and the third sessions in
the schedule V).

* Before exchange Vo = Ugab, Uac, Uad, Ubd, Ucd, Uch,

* After exchange Vo’ = U4, Uac, Uab , Upd, Ued, U,
2) Replacement of a connection between two sessions (e.g., the connection between the first
session and the nearest session as shown in Figure 1). For example, the session Uy, is close to
session U, and the use of mutation operator can be illustrated as follows:

« Before exchange Vo = Uap, Uac, Uad, Upd, Ucd, Ucp,

« After exchange Vi’ = Uy, Uap, Uad, Ubd, Ucd, Uch,

As can be seen, we are not actually calculating a solution to the problem being treated; we are
merely selecting and encouraging the best emerging ones after certain random operations.
This is why we actually do not need to know how to solve the problem when using GA
technique. We just have to be able to evaluate the quality of the generated solutions at each
new iteration by creating a proper “fitness function”; nothing else! This means the
implementation of GA technique is easy and can rely on a problem-independent “engine”,
requiring little problem-related work. The evolution and selection process is problem-
independent, while only the fitness function and one that decodes the chromosomes into a
readable form are problem-specific.

5.2. Intensification phase

The GPS-GA technique adopts the intensification phase around a promising schedule by
slightly changing the order of the sessions to be observed. This can be done by implementing
the simple and relatively effective 2-opt procedure as follows. After a potential schedule is
generated during diversification phase, a simple transformation based on local search method
is applied to this schedule (swapping between neighboring sessions to generate all the
possible schedules). In intensification phase, it is important to carry out a systematic search by
testing all the possible permutations in a schedule and this is depending on the size of the
network to be optimized. If the transformation improves the schedule, then this transformation
is kept, otherwise has to be changed. The above transformation will be repeated until no
further improvement can be obtained from the swapping process between the sessions of the
generated schedule. For more details about the 2-opt procedure, the reader is referred to Lin
(1965). It is preferable to start the process with a large population to cover the whole schedule
search domain. The mutation probability depends on the size of the population and may vary
during the optimization process.

Network Information Initial schedule GPS-GA technique Reduction
Network N S Vo Vaa ET RRC%
Malta 38 25 1405 940 10 33.10
Seychelles 71 36 994 857 80 13.78

Table 8. The computational results of the GPS-GA technique applied to GPS networks
observed in Malta and the Seychelles.
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Where

N: number of stations;

S: number of sessions;

Vo: the initial schedule;

Via: the generated potential schedule by the GPS-GA technique;

ET: the processing time needed to find the potential schedule (in seconds);
RRC= The Relative Reduction of the Cost and given by [(V(¢-Vga)/Vo]*100.

5.3. Large networks

To generalize the developed technique and work with larger networks, two different types and
sizes of GPS surveying networks were used. The first network was a triangulation-type of
Malta which consists of 38 sessions connecting 25 stations. The initial schedule, with cost of
1405 minutes, represents the actual operating solution which was manually generated using
the intuition and experience of the surveyors (Dare, 1994). By implementing the GPS-GA
technique, the overall cost of the initial schedule was reduced from 1405 minutes to 940
minutes after 20 seconds. The second network was a linear-type of the Seychelles which
consists of 71 sessions connecting 57 stations. The initial schedule, with cost of 994 minutes,
represents the actual operating solution which was manually generated using the intuition and
experience of the surveyors (Dare, 2000). By implementing the GPS-GA technique, the
overall cost of the initial schedule was reduced from 994 minutes to 857 minutes after 80
seconds. Table 8 shows the results obtained by the developed technique for both Malta and
Seychelles GPS networks. The tuning of control parameters is an important issue concerning
the implementation of metaheuristics. The values obtained for the control parameters are: the
initial population size n equal to 30, the crossover probability pCross equal to 0.9, and the
initial mutation probability pMut equal to 0.85. The improvements process is terminated when
the stopping criterion is met. The adopted stopping criterion is the predefined number of
iterations (process time) chosen by the user to find the best possible schedule. Compared to
other optimization methods, GA technique is robust, global and easy to apply and less
susceptible to getting ‘stuck’ at local optima, but it tends to be computationally expensive. In
this research, the developed GPS-GA technique has been coded in Visual C++.

6. CONCLUSIONS AND FURTHER WORKS

The GA metaheuristic is universal optimization method which requires little knowledge about
a problem to be solved. At this point the benefits of the GPS-GA technique has been
investigated and evaluated for solving and optimizing the GPS surveying network problem
(with the static nature). For the future research, the above model will be dynamically
expanded to efficiently provide flexible and computerized procedures for determining high-
accuracy models with a higher resolution for other geomatic applications (e.g., modeling
atmospheric effects, a global high-accuracy gravity field model, and geographic information
systems, etc). Many of the current challenges in optimizing these important applications focus
on increasing and improving the functionalities of the established techniques for dealing with
more real features, such as temporal and metric capabilities, handling a mixture of continuous
variables as well as discrete selections, etc. For example, this model will help in investigating
various integrations of the internal and external dynamics involved in the planning,
development and inception of the space flight “Mission to Mars”. This will provide a clear
understanding and thorough analysis of the thermal environment under various atmospheric
density and velocity conditions which is fundamental to the future widespread use in mission
applications.
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