
CONDOR, an new Parallel, Constrained

extension of Powell’s UOBYQA algorithm.

Experimental results and comparison

with the DFO algorithm.

Frank Vanden Berghen, Hugues Bersini

IRIDIA, Université Libre de Bruxelles
Avenue Franklin Roosevelt, 50 CP194/6

1050 Brussels, Belgium.

Abstract

This paper presents an algorithmic extension of Powell’s UOBYQA algorithm (”Un-
constrained Optimization BY Quadratical Approximation”). We start by summariz-
ing the original algorithm of Powell and by presenting it in a more comprehensible
form. Thereafter, we report comparative numerical results between UOBYQA, DFO
and a parallel, constrained extension of UOBYQA that will be called in the paper
CONDOR (”COnstrained, Non-linear, Direct, parallel Optimization using trust Re-
gion method for high-computing load function”). The experimental results are very
encouraging and validate the approach. They open wide possibilities in the field
of noisy and high-computing-load objective functions optimization (from two min-
utes to several days) like, for instance, industrial shape optimization based on CFD
(Computation Fluid Dynamic) codes or PDE (partial differential equations) solvers.
Finally, we present a new, easily comprehensible and fully stand-alone implementa-
tion in C++ of the parallel algorithm.

Key words: non-linear optimization, lagrange interpolation, trust region method,
optimal shape design, parallel computing

1 Introduction

Powell’s UOBYQA algorithm ([35] or [36]) is a new algorithm for uncon-
strained, direct optimization that take into account the curvature of the ob-

Email address: fvandenb@iridia.ulb.ac.be, Bersini@ulb.ac.be (Frank
Vanden Berghen, Hugues Bersini).

jective function, leading to a high convergence speed. UOBYQA is the direct
successor of COBYLA [32]. Classical quasi-newton methods also use curva-
ture information ([28,2,1,15,18]) but they need explicit gradient information,
usually obtained by finite difference. In the field of aerodynamical shape op-
timization, the objective functions are based on expensive simulation of CFD
(computation fluid dynamic) codes (see [42,29,13,30,31]) or PDE (partial dif-
ferential equations) solvers. For such applications, choosing an appropriate
step size for approximating the derivatives by finite differences is quite del-
icate: function evaluation is expensive and can be very noisy. For such type
of application, finite difference quasi-newton methods need to be avoided. In-
deed, even if actual derivative information were available, quasi-Newton meth-
ods might be a poor choice because adversely affected by function inaccuracies
(see [17]). Instead, direct optimization methods [16] are relatively insensitive
to the noise. Unfortunately, they usually require a great amount of function
evaluations.

UOBYQA and CONDOR sample the search space, making evaluations in a
way that reduces the influence of the noise. They both construct a full quadrat-
ical model based on Lagrange Interpolation technique [14,38,8,43,44,34]. The
curvature information is obtained from the quadratical model. This technique
is less sensitive to the noise and leads to high quality local quadratical models
which directly guide the search to the nearest local optimum. These quadrat-
ical models are built using the least number of evaluations (possibly reusing
old evaluations).

DFO [12,11] is an algorithm by A.R.Conn, K. Scheinberg and Ph.L. Toint.
It’s very similar to UOBYQA and CONDOR. It has been specially designed
for small dimensional problems and high-computing-load objective functions.
In other words, it has been designed for the same kind of problems that CON-
DOR. DFO also uses a model build by interpolation. It is using a Newton poly-
nomial instead of a Lagrange polynomial. When the DFO algorithm starts, it
builds a linear model (using only n + 1 evaluations of the objective function;
n is the dimension of the search space) and then directly uses this simple
model to guide the research into the space. In DFO, when a point is ”too far”
from the current position, the model could be invalid and could not represent
correctly the local shape of the objective function. This ”far point” is rejected
and replaced by a closer point. This operation unfortunately requires an eval-
uation of the objective function. Thus, in some situation, it is preferable to
lower the degree of the polynomial which is used as local model (and drop the
”far” point), to avoid this evaluation. Therefore, DFO is using a polynomial
of degree oscillating between 1 and a ”full” 2. In UOBYQA and CONDOR,
we use the Moré and Sorenson algorithm [27,9] for the computation of the
trust region step. It is very stable numerically and give very high precision
results. On the other hand, DFO uses a general purpose tool (NPSOL [20])
which gives high quality results but that cannot be compared to the Moré

2

and Sorenson algorithm when precision is critical. An other critical difference
between DFO and CONDOR/UOBYQA is the formula used to update the
local model. In DFO, the quadratical model built at each iteration is not de-
fined uniquely. For a unique quadratical model in n variables one needs at
least 1

2
(n + 1)(n + 2) = N points and their function values. ”In DFO, models

are often build using many fewer points and such models are not uniquely
defined” (citation from [11]). The strategy used inside DFO is to select the
model with the smallest Frobenius norm of the Hessian matrix. This update
is highly numerically instable [37]. Some recent research at this subject have
maybe found a solution [37] but this is still ”work in progress”. The model
DFO is using can thus be very inaccurate.

In contrast to UOBYQA and CONDOR, DFO uses linear or quadratical mod-
els to guide the search, thus requiring less function evaluations to build the
local models. Based on our experimental results, we surprisingly discovered
that CONDOR used less function evaluations than DFO to reach an optimum
point, despite the fact that the cost to build a local model is higher (see sec-
tion 5 presenting numerical results). This is most certainly due to an heuristic
(see section 5.1 at this subject) used inside UOBYQA and CONDOR which
allows to build quadratical models at very ”low price”.

The algorithm used inside UOBYQA is thus a good choice to reduce the
number of function evaluations in the presence of noisy and high computing
load objective functions. Since description of this algorithm in the literature
is hard to find and rather unclear, a first objective of the paper is to provide
an updated and more accessible version of it.

When concerned with CPU time to reach the local optimum, computer paral-
lelization of the function evaluations is always an interesting road to pursue.
Indeed, PDS (Parallel direct search) largely exploits this parallelization to re-
duce the optimization time. We take a similar road by proposing an extension
of the original UOBYQA that can use several CPU’s in parallel: CONDOR.
Our experimental results show that this addition makes CONDOR the fastest
available algorithm for noisy, high computing load objective functions (fastest
in terms of number of function evaluations).

In substance, this paper proposes a new, simpler and clearer, parallel im-
plementation in C++ of UOBYQA: the CONDOR optimizer. A version of
CONDOR allowing constraints is discussed in [41].

The paper is structured in the following way:

• Section 1: The introduction.
• Section 2: Basic description of the UOBYQA algorithm with hints to pos-

sible parallelization.
• Section 3: New, more in depth, comprehensible presentation of UOBYQA

3

with a more precise description of the parallel extension.
• Section 4: In depth description of this parallel extension.
• Section 5: Experimental results: comparison between CONDOR, the orig-

inal Powell’s UOBYQA, DFO, LANCELOT, COBYLA, PDS.
• Section 5: How to get the code and conclusions.

2 Basic description of Powell’s UOBYQA algorithm

Let n be the dimension of the search space. Let f(x) be the objective function
to minimize. We want to find x∗ ∈ <n which satisfies:

f(x∗) = min
x

f(x) (1)

In the following algorithm, ρ is the usual trust region radius. We do not allow
ρ to increase because this would necessitate expensive decrease later. We will
introduce ∆, another trust region radius that satisfies ∆ ≥ ρ. The advantage
of ∆ is to allow the length of the steps to exceed ρ and to increase the efficiency
of the algorithm.

Let xstart be the starting point of the algorithm. Let ρstart and ρend be the
initial and final value of the trust region radius ρ.

Definition 1 The local approximation qk(s) of f(x) is valid in Bk(ρ) (a ball
of radius ρ around xk) when |f(xk + s) − qk(s)| ≤ κρ2 ∀‖s‖ ≤ ρ where κ is
a given constant independent of x.

Basically, Powell’s UOBYQA algorithm does the following (for a more detailed
explanation, see section 3 or [35]):

(1) Create an interpolation polynomial q0(s) of degree 2 which interpolates
the objective function around xstart. All the points in the interpolation
set Y (used to build q(x)) are separated by a distance of approxima-
tively ρstart. Set xk = the best point of the objective function known so
far. Set ρ0 = ρstart. In the following algorithm, qk(s) is the quadratical
approximation of f(x) around xk: qk(s) = f(xk) + gt

ks + stHks where gk

is an approximation of the gradient of f(x) evaluated at xk and Hk is an
approximation of the Hessian matrix of f(x) evaluated at xk.

(2) Set ∆k = ρk

(3) Inner loop: solve the problem for a given precision of ρk.
(a) (i)

Solve sk = min
s∈<n

qk(s) subject to ‖s‖2 < ∆k (2)

(ii) If ‖sk‖ < 1
2
ρk, then break and go to step 3(b) because, in order

to do such a small step, we need to be sure that the model is

4

valid.
(iii) Evaluate the function f(x) at the new position xk + sk. Update

(like described in next section, 4(a)viii. to 4(a)x.) the trust re-
gion radius ∆k and the current best point xk using classical trust
region technique. Include the new xk inside the interpolation set
Y . Update qk(s) to interpolate on the new Y .

(iv) If some progress has been achieved (for example, ‖sk‖ > 2ρ or
there was a reduction f(xk+1) < f(xk)), increment k and go
back to step 3(a)i, otherwise continue.

(b) Test the validity of qk(x) in Bk(ρ), like described in [35].
• Model is invalid:

Improve the quality of the model q(x): Remove the worst point of
the interpolation set Y and replace it (one evaluation required!)
with a new point xnew such that: ‖xnew − xk‖ < ρ and the
precision of qk(s) is substantially increased.

• Model is valid:
If ‖sk‖ > ρk go back to step 3(a), otherwise continue.

(4) Reduce ρ since the optimization steps sk are becoming very small, the
accuracy needs to be raised.

(5) If ρ = ρend stop, otherwise increment k and go back to step 2.

Basically, ρ is the distance (Euclidian distance) which separates the points
where the function is sampled. When the iterations are unsuccessful, the trust
region radius ∆k decreases, preventing the algorithm to achieve more progress.
At this point, loop 3(a)i to 3(a)iv is exited and a function evaluation is required
to increase the quality of the model (step 3(b)). When the algorithm comes
close to an optimum, the step size becomes small. Thus, the inner loop (steps
3(a)i. to 3(a)iv.) is usually exited from step 3(a)ii, allowing to skip step 3(b)
(hoping the model is valid), and directly reducing ρ in step 4.

The most inner loop (steps 3(a)i. to 3(a)iv.) tries to get from qk(s) good search
directions without doing any extra evaluation to maintain the quality of qk(s)
(The evaluations that are performed on step 3(a)i) have another goal). Only
inside step 3(b), evaluations are performed to increase this quality (called a
”model step”) and only at the condition that the model has been proven to
be invalid (to spare evaluations!).

Notice the update mechanism of ρ in step 4. This update occurs only when
the model has been validated in the trust region Bk(ρ) (when the loop 3(a)
to 3(b) is exited). The function cannot be sampled at point too close to the
current point xk without being assured that the model is valid in Bk(ρ). This
mechanism protects us against noise.

The different evaluations of f(x) are used to:

5

(a) guide the search to the minimum of f(x) (see inner loop in the steps 3(a)i.
to 3(a)iv.). To guide the search, the information gathered until now and
available in qk(s) is exploited.

(b) increase the quality of the approximator qk(x) (see step 3(b)). To avoid the
degeneration of qk(s), the search space needs to be additionally explored.

(a) and (b) are antagonist objectives like frequently encountered in the exploi-
tation/exploration paradigm. The main idea of the parallelization of the algo-
rithm is to perform the exploration on distributed CPU’s. Consequently, the
algorithm will have better models qk(s) of f(x) available and choose better
search direction, leading to a faster convergence.

Let’s assume that the current minimization step sk pushes CONDOR to enter
into the infeasible space. We then activate all the box and linear constraints
which have been violated and we re-compute a solution of equation 2 in the
Reduced-Space of the Active Box and Linear Constraints (RSABLC) to ob-
tain a new sk. A basis of the RSABLC is needed and is built using a QR
factorisation with pivoting [18,22]. If some non-linear constraints are active,
an SQP algorithm [2] performed inside the RSABLC is used to compute the
new . The decision to remove a constraint J out of the active set of the con-
straints is mainly based on the value of the Lagrangian variable (also called
dual variable) associated to the constraint J. For in depth explanation of the
constrained step inside CONDOR, see [41].

UOBYQA and CONDOR are inside the class of algorithm which are proven
to be globally convergent to a local (maybe global) optimum: They are both
using conditional models as described in [12,8].

3 The UOBYQA algorithm in depth

We will now detail the UOBYQA algorithm [35] and a part of its parallel
extension. As a result of this parallel extension, the points 3, 4(a)i, 4(b), 9
constitute an original contribution of the authors. When only one CPU is
available, these points are simply skipped. The point 4(a)v is also original
and has been added to make the algorithm more robust against noise in the
evaluation of the objective function. These points will be detailed in the next
section. The other points of the algorithm belong to the original UOBYQA.

Let noisea and noiser, be the absolute and relative error on the evaluation
of the objective function. These constants are given by the user. By default,
they are null.

(1) Set ∆ = ρ, ρ = ρstart and generate a first interpolation set Y = {x(1), . . . ,x(N)}

6

around xstart (with N = (n + 1)(n + 2)/2). This set is ”poised”, meaning
that the Vandermonde determinant of Y is non-null (see [14,38]). The set
Y is generated using the algorithm described in [35].

(2) In what follows, the index k is always the index of the best point of the set
Y = {x(1), . . . ,x(N)}. The points in Y will be noted in bold with paren-
thesis around their subscript. Let x(base) := x(k). Set Fold := f(x(base)).
Apply a translation of −x(base) to all the dataset {x(1), . . . ,x(N)} and
generate the quadratical polynomial q(x), which intercepts all the points
in the dataset Y . The translation is achieved to increase the quality of
the interpolation. qk(s) is built using Multivariate Lagrange Interpola-
tion. It means that qk(s) =

∑N
i=1 f(x(i))Pi(s) where the Pi(s) are the

Lagrange polynomials associated to the dataset Y . The Pi(s) have the
following property: Pi(x(j)) = δ(i,j) where δ(i,j) is the Kronecker delta
(see [14,38] about multivariate Lagrange polynomial interpolation). The
complete procedure is given in [35].

(3) Parallel extension: Start the ”parallel computations” on the different
computer nodes. See next section for more details.

(4) (a) (i) Parallel extension: Check the results of the parallel computation
and use them to increase the quality of qk(s). See next section
for more details.

(ii) Calculate the ”Trust region step” s∗: s∗ is the solution of:

min
s∈<n

q(x(k) + s) = min
s∈<n

qk(s) subject to ‖s‖2 < ∆

This is a quadratic program with a non-linear constraint. It’s
solved using Moré and Sorenson algorithm (see [27,9]). The orig-
inal implementation of the UOBYQA algorithm uses a special
tri-diagonal decomposition of the Hessian to obtain high speed
(see [33]). CONDOR uses a direct, simpler, implementation of
the Moré and Sorenson algorithm.

(iii) If ‖s‖ <
ρ

2
, then break and go to step 4(b): the model needs to

be validated before doing such a small step.
(iv) Let R := q(x(k)) − q(x(k) + s∗) ≥ 0, the predicted reduction of

the objective function.
(v) One original addition to the algorithm is the following:

Let noise := 1
2
max[noisea ∗ (1 + noiser), noiser|f(x(k))|].

If (R < noise), break and go to step 4(b).
(vi) Evaluate the objective function f(x) at point x = x(base)+x(k)+

s∗. The result of this evaluation is stored in the variable Fnew.
(vii) Compute the agreement r between f(x) and the model q(x):

r =
Fold − Fnew

R

7

(viii) Update the trust region radius ∆:















max[∆, 5
4
‖s‖, ρ + ‖s‖] if 0.7 ≤ r,

max[1
2
∆, ‖s‖] if 0.1 < r < 0.7,

1
2
‖s‖ if r ≤ 0.1

If (∆ < 1.5ρ), set ∆ := ρ.
(ix) Store x(k) + s∗ inside the interpolation dataset Y . To do so,

first, choose the worst point x(t) of the dataset (The exact, de-
tailed algorithm, is given in [35]). This is the point which gives
the highest contribution to following bound on the interpolation
error [34]:

Interpolation
error at point y

= |qk(y) − f(y)| <
M

6

N
∑

j=1

|Pj(y)|‖y − x(j)‖3

(3)
Where M is a bound on the third derivative of f(x): |φ′′′(α)| ≤

M where φ(α) = f(y + αd̄), α ∈ <, d̄ ∈ <n and ‖d̄‖ = 1, and
where Pj(y) are the Lagrange Polynomials used to construct
qk(y).(see [14,38] about multivariate Lagrange polynomial inter-
polation).

Secondly, replace the point x(t) by x(k) + s∗ and recalculate
the new quadratic qk(s) which interpolates the new dataset.
Definition 2 The ModelStep is ‖x(t) − (x(k) + s∗)‖

(x) Update the index k of the best point in the dataset.
Set Fnew := min[Fold, Fnew].

(xi) Update the value M (the bound on the third derivative of f(x))
using:

Mnew = max

[

Mold,
|qk(x) − f(x)|

1
6

∑N
j=1 |Pj(x)|‖x − x(j)‖3

]

(4)

(xii) If there is an improvement in the quality of the solution (Fnew <
Fold) OR if (‖s∗‖ > 2ρ) OR if ModelStep > 2ρ then go back to
point 4(a)i, otherwise, continue.

(b) Parallel extension: Check the results of the parallel computation and
use them to increase the quality of qk(s). See next section for more
details.

(c) The validity of our model in Bk(ρk), a ball of radius ρk around x(k)

now needs to be checked based on equations (7) and (8).
• Model is invalid:

Improve the quality of our model q(x). This is called a ”model
improvement step”. Remove the worst point x(j) of the dataset
and replace it by a better point. This better point is computed

8

using an algorithm described in [35]. If a new function evaluation
has been made, the value of M must also be updated. Possibly,
an update of the index k of the best point in the dataset Y and
Fold is required. Once this is finished, go back to step 4(a).

• Model is valid:
If ‖s∗‖ > ρ go back to step 4(a), otherwise continue.

(5) If ρ = ρend, the algorithm is nearly finished. Go to step 8, otherwise
continue to the next step.

(6) Update of trust region radius ρ.

ρnew =















ρend if ρend < ρ ≤ 16ρend√
ρend ρ if 16ρend < ρ ≤ 250ρend

0.1ρ if 250ρend < ρ

(5)

Set ∆ := max[
ρ

2
, ρnew]. Set ρ := ρnew.

(7) Set x(base) := x(base)+x(k). Apply a translation of −x(k) to qk(s), to the set
of Newton polynomials Pi which defines qk(s) and to the whole dataset
Y = {x(1), . . . ,x(N)}. Go back to step 4.

(8) The iterations are now complete but one more value of f(x) may be
required before termination. Indeed, it is known from step 4(a)iii and
step 4(a)v of the algorithm that the value of f(x(base) + x(k) + s∗) could
not have been computed. Compute Fnew := f(x(base) + x(k) + s∗).
• if Fnew < Fold, the solution of the optimization problem is x(base)+x(k)+

s∗ and the value of f at this point is Fnew.
• if Fnew > Fold, the solution of the optimization problem is x(base) + x(k)

and the value of f at this point is Fold.
(9) Parallel extension: Stop the parallel computations if necessary.

The aim of the parallelization is to evaluate f(x) at positions which could
substantially increase the quality of the approximator qk(s). The way to choose
such positions is explained in section 4.

4 The parallel extension of UOBYQA

We will use a client-server approach. The main node, the server, will run two
concurrent processes:

• The main process on the main computer is the classical non-parallelized
version of the algorithm, described in the previous section. There is an
exchange of information with the second/parallel process on steps 4(a)i and
4(b) of the original algorithm.

• The goal of the second/parallel process on the main computer is to

9

increase the quality of the model qk(s) by using client computers to sample
f(x) at specific interpolation sites.

In an ideal scenario:

• The main process will always stay inside the most inner loop 4(a)i to
4(a)xii. Hoping that the evaluation on the client computers always provide
a valid local model qk(s), progress will constantly be achieved.

• The main process exits the inner loop at step 4(a)iii: Near an optimum,
the model is ideally valid and ρ can be decreased.

The client nodes are performing the following:

(1) Wait to receive from the second/parallel process on the server a sampling
site (a point).

(2) Evaluate the objective function at this site and return immediately the
result to the server.

(3) Go to step 1.

Several strategies have been tried to select good sampling sites. We describe
here the most promising one. The second/parallel task is the following:

A. Make a local copy q(copy)(s) of qk(s) (and of the associated Lagrange
Polynomials Pj(x))

B. Make a local copy J (copy) of the dataset J = {x(1), . . . ,x(N)}.
C. Find the index j of the point inside J (copy) the further away from x(k).
D. Replace x(j) by a better point x(j) + d which will increase the quality

of the approximation of f(x). The computation of this point is detailed
below.

E. Ask for an evaluation of the objective function at point x(j) + d using
a free client computer to perform the evaluation. If there is still a client
idle, go back to step C.

F. Wait for a node to finish its evaluation of the objective function f(x).
Most of the time, the second/parallel task will be blocked here without
consuming any resources.

G. Update q(copy)(x) using the newly received evaluation. Update J (copy). go
to step C.

In the parallel/second process we are always working on a copy of qk(x), J and
Pj,(copy)(x) to avoid any side effect with the main process which is guiding the
search. The communication and exchange of information between these two
processes are done only at steps 4(a)i and 4(b) of the main process described
in the previous section. Each time the main process checks the results of the
parallel computations the following is done:

i. Wait for the parallel/second task to enter the step F described above and

10

block the parallel task inside this step F for the time needed to perform the
points ii and iii below.

ii. Update of qk(s) using all the points calculated in parallel, discarding the
points that are too far away from x(k) (at a distance greater than ρ)(The
points are inside J (copy)). This update is performed using technique described
in [35]. We will possibly have to update the index k of the best point in the
dataset J and Fold.

iii. Perform operations described in point A & B of the parallel/second task
algorithm above: ”Copy q(copy)(x) from qk(x).
Copy J (copy) from J = {x(1), . . . ,x(N)}”.

In step D. of the parallel algorithm, we must find a point which increase
substantially the quality of the local approximation q(copy)(x) of f(x). In the
following, the discovery of this better point is explained. The equation (3) is
used. We will restate it here for clarity:

Interpolation Error
of q(copy) at point y

= |q(copy)(y) − f(y)| <
M

6

N
∑

j=1

|Pj,(copy)(y)|‖y − x(j),(copy)‖3

where M and Pj,(copy) have the same signification as for equation (3). Note
also that we are working on a copy of qk(x), J and Pj(x). In the remaining of
the current section, we will drop the (copy) subscript for easier notation.

This equation has a special structure. The contribution to the interpolation
error of the point x(j) to be dropped is easily separable from the contribution
of the other points of the dataset J , it is:

error due to x(j) =
1

6
M |Pj(y)|‖y − x(j)‖3 (6)

If y is inside the ball of radius ρ around xk (xk is the best point found until
now in the second/parallel task), then an upper bound of equation (6) can be
found:

1

6
M max

y
{|Pj(y)|‖y − xk‖3 : ‖y − xk‖ ≤ ρ}

≈ 1

6
M‖x(j) − xk‖3 max

d
{|Pj(xk + d)| : ‖d‖ ≤ ρ}

We are ignoring the dependence of the other Newton polynomials in the hope
of finding a useful technique and cheap to implement. x(j) is thus replaced in
J (copy) by xk + d where d is the solution of the following problem:

max
d

{|Pj(xk + d)| : ‖d‖ ≤ ρ}

The algorithm used to solve this problem is described in [35].

11

5 Numerical Results

5.1 Results on one CPU

We will now compare CONDOR with UOBYQA [35], DFO [12,11], PDS [16],
LANCELOT [7] and COBYLA [32] on a part of the Hock and Schittkowski
test set [24]. The test functions and the starting points are extracted from SIF
files obtained from CUTEr, a standard test problem database for non-linear
optimization (see [23]). We are thus in perfect standard conditions. The tests
problems are arbitrary and have been chosen by A.R.Conn, K. Scheinberg
and Ph.L. Toint. to test their DFO algorithm. The performances of DFO are
thus expected to be, at least, good. We list the number of function evalua-
tions that each algorithm took to solve the problem. We also list the final
function values that each algorithm achieved. We do not list the CPU time,
since it is not relevant in our context. The ”*” indicates that an algorithm
terminated early because the limit on the number of iterations was reached.
The default values for all the parameters of each algorithm is used. The stop-
ping tolerance of DFO was set to 10−4, for the other algorithms the tolerance
was set to appropriate comparable default values. The comparison between
the algorithms is based on the number of function evaluations needed to reach
the SAME precision. For the most fair comparison with DFO, the stopping
criteria (ρend) of CONDOR has been chosen so that CONDOR is always stop-
ping with a little more precision on the result than DFO. This precision is
some time insufficient to reach the true optima of the objective function. In
particular, in the case of the problems GROWTHLS and HEART6LS, the
CONDOR algorithm can find a better optimum after some more evaluations
(for a smaller ρend). All algorithms were implemented in Fortran 77 in double
precision except COBYLA which is implemented in Fortran 77 in single preci-
sion and CONDOR which is written in C++ (in double precision). The trust
region minimization subproblem of the DFO algorithm is solved by NPSOL
[20], a fortran 77 non-linear optimization package that uses an SQP approach.
For CONDOR, the number in parenthesis indicates the number of function
evaluation needed to reach the optimum without being assured that the value
found is the real optimum of the function. For example, for the WATSON
problem, we find the optimum after (580) evaluations. CONDOR still contin-
ues to sample the objective function, searching for a better point. It’s loosing
87 evaluations in this search. The total number of evaluation (reported in the
first column) is thus 580+87=667.

CONDOR and UOBYQA are both based on the same algorithm and have
nearly the same behavior.

PDS stands for ”Parallel Direct Search” [16]. The number of function evalu-

Number of Function Evaluation final function value
Name Dim CONDOR UOB. DFO PDS LAN. COB. CONDOR UOBYQA DFO PDS LANCELOT COBYLA

ROSENBR 2 82 (80) 87 81 2307 94 8000 2.0833e-08 4.8316e-08 1.9716e-07 1.2265e-07 5.3797e-13 4.6102e+04*

SNAIL 2 316 (313) 306 246 2563 715 8000 9.3109e-11 1.8656e-10 1.2661e-08 2.6057e-10 4.8608e+00 7.2914e+00*

SISSER 2 40 (40) 31 27 1795 33 46 8.7810e-07 2.5398e-07 1.2473e-06 9.3625e-20 1.3077e-08 1.1516e-20

CLIFF 2 145 (81) 127 75 3075 84 36 1.9978e-01 1.9978e-01 1.9979e-01 1.9979e-01 1.9979e-01 2.0099e-01

HAIRY 2 47 (47) 305 51 2563 357 3226 2.0000e+01 2.0000e+01 2.0000e+01 2.0000e+01 2.0000e+01 2.0000e+01

PFIT1LS 3 153 (144) 158 180 5124 216 8000 2.9262e-04 1.5208e-04 4.2637e-04 3.9727e-06 1.1969e+00 2.8891e-02*

HATFLDE 3 96 (89) 69 95 35844 66 8000 5.6338e-07 6.3861e-07 3.8660e-06 1.7398e-05 5.1207e-07 3.5668e-04*

SCHMVETT 3 32 (31) 39 53 2564 32 213 -3.0000e+00 3.0000e+00 -3.0000e+00 -3.0000e+00 -3.0000e+00 -3.0000e+00

GROWTHLS 3 104 (103) 114 243 2308 652 6529 1.2437e+01 1.2446e+01 1.2396e+01 1.2412e+01 1.0040e+00 1.2504e+01

GULF 3 170 (160) 207 411 75780 148 8000 2.6689e-09 3.8563e-08 1.4075e-03 3.9483e-02 7.0987e-17 6.1563e+00*

BROWNDEN 4 91 (87) 107 110 5381 281 540 8.5822e+04 8.5822e+04 8.5822e+04 8.5822e+04 8.5822e+04 8.5822e+04

EIGENALS 6 123 (118) 119 211 5895 35 1031 3.8746e-09 2.4623e-07 9.9164e-07 1.1905e-05 2.0612e-16 7.5428e-08

HEART6LS 6 346 (333) 441 1350 37383 6652 8000 4.3601e-01 4.0665e-01 4.3167e-01 1.6566e+00 4.1859e-01 4.1839e+00*

BIGGS6 6 284 (275) 370 1364 31239 802 8000 1.1913e-05 7.7292e-09 1.7195e-05 7.5488e-05 8.4384e-12 8.3687e-04*

HART6 6 64 (64) 64 119 6151 57 124 -3.3142e+00 -3.2605e+00 -3.3229e+00 -3.3229e+00 -3.3229e+00 -3.3229e+00

CRAGGLVY 10 545 (540) 710 1026 13323 77 1663 1.8871e+00 1.8865e+00 1.8866e+00 1.8866e+00 1.8866e+00 1.8866e+00

VARDIM 10 686 (446) 880 2061 33035 165 4115 8.7610e-13 1.1750e-11 2.6730e-07 8.5690e-05 1.8092e-26 4.2233e-06

MANCINO 10 184 (150) 143 276 11275 88 249 3.7528e-09 6.1401e-08 1.5268e-07 2.9906e-04 2.2874e-16 2.4312e-06

POWER 10 550 (494) 587 206 13067 187 368 9.5433e-07 2.0582e-07 2.6064e-06 1.6596e-13 8.0462e-09 6.8388e-18

MOREBV 10 110 (109) 113 476 75787 8000 8000 1.0100e-07 1.6821e-05 6.0560e-07 1.0465e-05 1.9367e-13 2.2882e-06*

BRYBND 10 505 (430) 418 528 128011 8000 8000 4.4280e-08 1.2695e-05 9.9818e-08 1.9679e-02 7.5942e-15 8.2470e-03*

BROWNAL 10 331 (243) 258 837 14603 66 103 4.6269e-09 4.1225e-08 9.2867e-07 1.3415e-03 1.1916e-11 9.3470e-09

DQDRTIC 10 201 (79) 80 403 74507 33 7223 2.0929e-18 1.1197e-20 1.6263e-20 1.1022e-04 1.6602e-23 3.8218e-06

WATSON 12 667 (580) 590 1919 76813 200 8000 7.9451e-07 2.1357e-05 4.3239e-05 2.5354e-05 2.0575e-07 7.3476e-04*

DIXMAANK 15 964 (961) 1384 1118 63504 2006 2006 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0001e+00

FMINSURF 16 695 (615) 713 1210 21265 224 654 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

Total Number of

Function Evaluation
7531 (6612) 8420 14676 > 20000

Fig. 1. Comparative results between CONDOR, UOBYQA, DFO, PDS, LANCELOT and COBYLA on one CPU.

ations is high and so the method doesn’t seem to be very attractive. On the
other hand, these evaluations can be performed on several CPU’s reducing
considerably the computation time.

Lancelot [7] is a code for large scale optimization when the number of variable
is n > 10000 and the objective function is easy to evaluate (less than 1ms.).
Its model is build using finite differences and BFGS update. This algorithm
has not been design for the kind of application we are interested in and is thus
performing accordingly.

COBYLA [32] stands for ”Constrained Optimization by Linear Approxima-
tion” by Powell. It is, once again, a code designed for large scale optimization.
It is a derivative free method, which uses linear polynomial interpolation of
the objective function.

DFO [12,11] is an algorithm by A.R.Conn, K. Scheinberg and Ph.L. Toint. It
has already been described in section 1. In CONDOR and in UOBYQA the
validity of the model is checked using two equations:

All the interpolation points must
be close to the current point x(k)

: ‖x(j) − x(k)‖ ≤ 2ρ j = 1, . . . , N (7)

Powell’s
heuristic

:
M

6
‖x(j) − x(k)‖3 max

d
{|Pj(x(k) + d)| : ‖d‖ ≤ ρ} ≤ ε j = 1, . . . , N

(8)

using notation of section 3. See [35] to know how to compute ε. The first
equation (7) is also used in DFO. The second equation (8) (which is similar to
equation (3)) is NOT used in DFO. This last equation allows us to ”keep far
points” inside the model, still being assured that it is valid. It allows us to have
a ”full” polynomial of second degree for a ”cheap price”. The DFO algorithm
cannot use equation 8 to check the validity of its model because the variable
ε (which is computed in UOBYQA and in CONDOR as a by-product of the
computation of the ”Moré and Sorenson Trust Region Step”) is not cheaply
available. In DFO, the trust region step is calculated using an external tool:
NPSOL [20]. ε is difficult to obtain and is not used.

UOBYQA and CONDOR are always using a full quadratic model. This enables
us to compute Newton’s steps. The Newton’s steps have a proven quadrati-
cal convergence speed [15]. Unfortunately, some evaluations of the objective
function are lost to build the quadratical model. So, we only obtain *near*
quadratic speed of convergence. We have Q-superlinear convergence (see orig-
inal paper of Powell [35]). (In fact the convergence speed is often directly
proportional to the quality of the approximation Hk of the real Hessian ma-
trix of f(x)). Usually, the price (in terms of number of function evaluations)
to construct a good quadratical model is very high but using equation (8),
UOBYQA and CONDOR are able to use very few function evaluations to

14

update the local quadratical model.

When the dimension of the search space is greater than 25, the time needed to
start, building the first quadratic, is so important (N evaluations) that DFO
may becomes attractive again. Especially, if you don’t want the optimum of
the function but only a small improvement in a small time. If several CPU’s
are available, then CONDOR once again imposes itself. The function evalu-
ations needed to build the first quadratic are parallelized on all the CPU’s
without any loss of efficiency when the number of CPU increases (the max-
imum number of CPU is N + 1). This first construction phase has a great
parallel efficiency, as opposed to the rest of the optimization algorithm where
the efficiency becomes soon very low (with the number of CPU increasing).
In contrast to CONDOR, the DFO algorithm has a very short initialization
phase and a long research phase. This last phase can’t be parallelized very well.
Thus, when the number of CPU’s is high, the most promising algorithm for
parallelization is CONDOR. A parallel version of CONDOR has been imple-
mented. Very encouraging experimental results on the parallel code are given
in the next section.

When the local model is not convex, no second order convergence proof (see
[10]) is available. It means that, when using a linear model, the optimization
process can prematurely stop. This phenomenon *can* occur with DFO which
uses from time to time a simple linear model. CONDOR is very robust and
always converges to a local optimum (extensive numerical tests have been
made [41]).

5.2 Parallel results

We are using the same test conditions as for the previous section (standard
objective functions with standard starting points).

Since the objective function is assumed to be time-expensive to evaluate, we
can neglect the time spent inside the optimizer and inside the network trans-
missions. To be able to make this last assumption (negligible network trans-
missions times), a wait loop of 1 second is embedded inside the code used
to evaluate the objective function (only 1 second: to be in the worst case
possible).

Table 2 indicates the number of function evaluations performed on the master
CPU (to obtain approximatively the total number of function evaluations
cumulated over the master and all the slaves, multiply the given number on
the list by the number of CPU’s). The CPU time is thus directly proportional
to the numbers listed in columns 3 to 5 of the table 2.

15

Number of Function

Evaluations on the

main node

final function value
Name Dim

1CPU 2CPU 3CPU 1 CPU 2 CPU 3 CPU

ROSENBR 2 82 81 70 2.0833e-08 5.5373e-09 3.0369e-07

SNAIL 2 314 284 272 9.3109e-11 4.4405e-13 6.4938e-09

SISSER 2 40 35 40 8.7810e-07 6.7290e-10 2.3222e-12

CLIFF 2 145 87 69 1.9978e-01 1.9978e-01 1.9978e-01

HAIRY 2 47 35 36 2.0000e+01 2.0000e+01 2.0000e+01

PFIT1LS 3 153 91 91 2.9262e-04 1.7976e-04 2.1033e-04

HATFLDE 3 96 83 70 5.6338e-07 1.0541e-06 3.2045e-06

SCHMVETT 3 32 17 17 -3.0000e+00 -3.0000e+00 -3.0000e+00

GROWTHLS 3 104 85 87 1.2437e+01 1.2456e+01 1.2430e+01

GULF 3 170 170 122 2.6689e-09 5.7432e-04 1.1712e-02

BROWNDEN 4 91 60 63 8.5822e+04 8.5826e+04 8.5822e+04

EIGENALS 6 123 77 71 3.8746e-09 1.1597e-07 1.5417e-07

HEART6LS 6 346 362 300 4.3601e-01 4.1667e-01 4.1806e-01

BIGGS6 6 284 232 245 1.1913e-05 1.7741e-06 4.0690e-07

HART6 6 64 31 17 -3.3142e+00 -3.3184e+00 -2.8911e+00

CRAGGLVY 10 545 408 339 1.8871e+00 1.8865e+00 1.8865e+00

VARDIM 10 686 417 374 8.7610e-13 3.2050e-12 1.9051e-11

MANCINO 10 184 79 69 3.7528e-09 9.7042e-09 3.4434e-08

POWER 10 550 294 223 9.5433e-07 3.9203e-07 4.7188e-07

MOREBV 10 110 52 43 1.0100e-07 8.0839e-08 9.8492e-08

BRYBND 10 505 298 198 4.4280e-08 3.0784e-08 1.7790e-08

BROWNAL 10 331 187 132 4.6269e-09 1.2322e-08 6.1906e-09

DQDRTIC 10 201 59 43 2.0929e-18 2.0728e-31 3.6499e-29

WATSON 12 667 339 213 7.9451e-07 1.1484e-05 1.4885e-04

DIXMAANK 15 964 414 410 1.0000e+00 1.0000e+00 1.0000e+00

FMINSURF 16 695 455 333 1.0000e+00 1.0000e+00 1.0000e+00

Total Number of

Function Evaluation
7531 4732 3947

Fig. 2. Improvement due to parallelism

Suppose a function evaluation takes 1 hour. The parallel/second process on
the main computer has asked 59 minutes ago to a client to perform one such
evaluation. We are at step 4(a)i of the main algorithm. We see that there are
no new evaluation available from the client computers. Should we go directly
to step 4(a)ii and use later this new information, or wait 1 minute? The re-
sponse is clear: wait a little. This bad situation occurs very often in our test
examples since every function evaluation takes exactly the same time (1 sec-
ond). But what’s the best strategy when the objective function is computing,
randomly, from 40 to 80 minutes at each evaluation (this is for instance the
case for objective functions which are calculated using CFD techniques)? The
response is still to investigate. Currently, the implemented strategy is: never

16

wait. Despite, this simple strategy, the current algorithm gives already some
non-negligible improvements.

5.3 Noisy optimization

We will assume that objective functions derived from CFD codes have usually
a simple shape but are subject to high-frequency, low amplitude noise. This
noise prevents us to use simple finite-differences gradient-based algorithms.
Finite-difference is highly sensitive to the noise. Simple Finite-difference quasi-
Newton algorithms behave so badly because of the noise, that most researchers
choose to use optimization techniques based on GA,NN,... [42,13,?,?]. The
poor performances of finite-differences gradient-based algorithms are either
due to the difficulty in choosing finite-difference step sizes for such a rough
function, or the often cited tendency of derivative-based methods to converge
to a local optimum [4]. Gradient-based algorithms can still be applied but a
clever way to retrieve the derivative information must be used. One such algo-
rithm is DIRECT [21,25,5] which is using a technique called implicit filtering.
This algorithm makes the same assumption about the noise (low amplitude,
high frequency) and has been successful in many cases [5,6,39]. For example,
this optimizer has been used to optimize the cost of fuel and/or electric power
for the compressor stations in a gas pipeline network [6]. This is a two-design-
variables optimization problem. You can see in the right of figure 5 a plot of
the objective function. Notice the simple shape of the objective function and
the small amplitude, high frequency noise. Another family of optimizers is
based on interpolation techniques. DFO, UOBYQA and CONDOR belongs to
this last family. DFO has been used to optimize (minimize) a measure of the
vibration of a helicopter rotor blade [4]. This problem is part of the Boeing
problems set [3]. The blade are characterized by 31 design variables. CONDOR
will soon be used in industry on a daily basis to optimize the shape of the blade
of a centrifugal impeller [29]. All these problems (gas pipeline, rotor blade and
impeller blade) have an objective function based on CFD code and are both
solved using gradient-based techniques. In particular, on the rotor blade de-
sign, a comparative study between DFO and other approaches like GA, NN,...
has demonstrated the clear superiority of gradient-based techniques approach
combined with interpolation techniques [4].

We will now illustrate the performances of CONDOR in two simple cases which
have sensibly the same characteristics as the objective functions encountered
in optimization based on CFD codes. The functions, the amplitude of the
artificial noise applied to the objective functions (uniform noise distribution)
and all the parameters of the tests are summarized in table 5.3. In this table
”NFE” stands for Number of Function Evaluations. Each columns represents
50 runs of the optimizer.

17

Objective function Rosenbrock A simple quadratic:
4

∑

i=1

(xi − 2)

starting point (−1.2 1)t (0 0 0 0)t

ρstart 1

ρend 1e-4

96.28 82.04 89.1 90.7 99.4 105.36
average NFE

(88.02) (53.6) (62.20) (64.56) (66.84) (68.46)

max NFE 105 117 116 113 129 124

min NFE 86 58 74 77 80 91

average best val 2.21e-5 6.5369e-7 3.8567e-6 8.42271e-5 8.3758e-4 1.2699e-2

noise 1e-4 1e-5 1e-4 1e-3 1e-2 1e-1

Fig. 3. Noisy optimization.

0 20 40 60 80 100 120 140
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0 20 40 60 80 100 120 140 160 180 200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Fig. 4. On the left: A typical run for the optimization of the noisy Rosenbrock
function. On the right:Four typical runs for the optimization of the simple noisy
quadratic (noise=1e-4).

10
−5

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Fig. 5. On the left: The relation between the noise (X axis) and the average best
value found by the optimizer (Y axis). On the right: Typical shape of objective
function derived from CFD analysis.

A typical run for the optimization of the noisy Rosenbrock function is given in
the left of figure 4. Four typical runs for the optimization of the simple noisy
quadratic in four dimension are given in the right of figure 4. The noise on
this four runs has an amplitude of 1e-4. In these conditions, CONDOR stops
in average after 100 evaluations of the objective function but we can see in
figure 4 that we usually already have found a quasi-optimum solution after
only 45 evaluations.

18

As expected, there is a clear relationship between the noise applied on the
objective function and the average best value found by the optimizer. This
relationship is illustrated in the left of figure 4. From this figure and from the
table 5.3 we can see the following: When you have a noise of 10n+2, the differ-
ence between the best value of the objective function found by the optimizer
AND the real value of the objective function at the optimum is around 10n. In
other words, in our case, if you apply a noise of 10−2, you will get a final value
of the objective function around 10−4. Obviously, this strange result only holds
for this simple objective function (the simple quadratic) and these particular
testing conditions. Nevertheless, the robustness against noise is impressive.

If this result can be generalized, it will have a great impact in the field of CFD
shape optimization. This simply means that if you want a gain of magnitude
10n in the value of the objective function, you have to compute your objective
function with a precision of at least 10n+2. This gives you an estimate of the
precision at which you have to calculate your objective function. Usually, the
more precision, the longer the evaluations are running. We are always tempted
to lower the precision to gain in time. If this strange result can be generalized,
we will be able to adjust tightly the precision and we will thus gain a precious
time.

6 Conclusions

Given the search space comprised between 2 and 20 and given some noise
of small amplitude and high frequency on the objective function evaluation,
among the best optimizer available are UOBYQA and its parallel, constrained
extension CONDOR. When several CPU’s are used, the experimental re-
sults tend to show that CONDOR becomes the fastest optimizer in its cate-
gory(fastest in terms of number of function evaluations).

Some improvements are still possible:

• Add the possibility to start with a linear model, using a stable update
inspired by [37].

• Use a better strategy for the parallel case (see end of section 5.2)
• Currently the trust region is a simple ball (this is linked to the L2-norm
‖s‖2 used in step 4(a)ii of the algorithm). It would be interesting to have
a trust region which reflects the underlying geometry of the model and not
give undeserved weight to certain directions (for example, using a H-norm)
(see [9]). This improvement will have a small effect provided the variables
have already been correctly normalized.

Some research can also be made in the field of kriging models (see [4]). These

19

models need very few ”model improvement steps” to obtain a good validity.
The validity of the approximation can also easily be checked.

The code of the optimizer is a complete C/C++ stand-alone package written
in pure structural programmation style. There is no call to fortran, external,
unavailable, copyrighted, expensive libraries. You can compile it under UNIX
or Windows. The only library needed is the standard TCP/IP network trans-
mission library based on sockets (only in the case of the parallel version of
the code) which is available on almost every platform. You don’t have to in-
stall any special library such as MPI or PVM to build the executables. The
client on different platforms/OS’es can be mixed together to deliver a huge
computing power. The full description of the algorithm code can be found in
[40].

The code has been highly optimized (with extended use of memcpy function,
special fast matrix manipulation, fast pointer arithmetics, and so on...). How-
ever, BLAS libraries [26] have not been used to allow a full Object-Oriented
approach. Anyway, the dimension of the problems is rather low so BLAS is
nearly un-useful. OO style programming allows a better comprehension of the
code for the possible reader.

A small C++ SIF-file reader has also been implemented (to be able to use the
problems coded in SIF from the CUTEr database, [34]). An AMPL interface
[19] has also been implemented.

The fully stand-alone code is currently available at the homepage of the first
author: http://iridia.ulb.ac.be/∼fvandenb/

References

[1] Aemdesign. URL: http://www.aemdesign.com/FSQPapplref.htm.

[2] Paul T. Boggs and Jon W. Tolle. Sequential Quadratic Programming. Acta
Numerica, pages 1–000, 1996.

[3] Andrew J. Booker, A.R. Conn, J.E. Dennis Jr., Paul D. Frank, Michael
Trosset, Virginia Torczon, and Michael W. Trosset. Global modeling for
optimization: Boeing/ibm/rice collaborative project 1995 final report. Technical
Report ISSTECH-95-032, Boeing Information Support Services, Research and
technology, Box 3707, M/S 7L-68, Seattle, Washington 98124, December 1995.

[4] Andrew J. Booker, J.E. Dennis Jr., Paul D. Frank, David B. Serafini, Virginia
Torczon, and Michael W. Trosset. Optimization using surrogate objectives
on a helicopter test example. Computational Methods in Optimal Design and
Control, pages 49–58, 1998.

20

[5] D. M. Bortz and C. T. Kelley. The Simplex Gradient and Noisy Optimization
Problems. Technical Report CRSC-TR97-27, North Carolina State University,
Department of Mathematics, Center for Research in Scientific Computation Box
8205, Raleigh, N. C. 27695-8205, September 1997.

[6] R. G. Carter, J. M. Gablonsky, A. Patrick, C. T. Kelley, and O. J. Eslinger.
Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization.
Optimization and Engineering, 2:139–157, 2001.

[7] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. LANCELOT: a
Fortran package for large-scale non-linear optimization (Release A). Springer
Verlag, HeidelBerg, Berlin, New York, springer series in computational
mathematics edition, 1992.

[8] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. Trust-region
Methods. SIAM Society for Industrial & Applied Mathematics, Englewood
Cliffs, New Jersey, mps-siam series on optimization edition, 2000. Chapter 9:
conditional model, pp. 307–323.

[9] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. Trust-region
Methods. SIAM Society for Industrial & Applied Mathematics, Englewood
Cliffs, New Jersey, mps-siam series on optimization edition, 2000. The ideal
Trust Region: pp. 236–237.

[10] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. Trust-region
Methods. SIAM Society for Industrial & Applied Mathematics, Englewood
Cliffs, New Jersey, mps-siam series on optimization edition, 2000. Note on
convex models, pp. 324–337.

[11] Andrew R. Conn, Nicholas I.M. Gould, and Philippe L. Toint. A Derivative
Free Optimization Algorithm in Practice. Technical report, Department of
Mathematics, University of Namur, Belgium, 98. Report No. 98/11.

[12] Andrew R. Conn, K. Scheinberg, and Philippe L. Toint. Recent progress
in unconstrained nonlinear optimization without derivatives. Mathematical
Programming, 79:397–414, 1997.

[13] R. Cosentino, Z. Alsalihi, and R. Van Den Braembussche. Expert System
for Radial Impeller Optimisation. In Fourth European Conference on
Turbomachinery, ATI-CST-039/01, Florence,Italy, 2001.

[14] Carl De Boor and A. A Ron. On multivariate polynomial interpolation. Constr.
Approx., 6:287–302, 1990.

[15] J.E. Dennis Jr. and Robert B. Schnabel. Numerical Methods for unconstrained
Optimization and nonlinear Equations. SIAM Society for Industrial & Applied
Mathematics, Englewood Cliffs, New Jersey, classics in applied mathematics,
16 edition, 1996.

[16] J.E. Dennis Jr. and V. Torczon. Direct search methods on parallel machines.
SIAM J. Optimization, 1(4):448–474, 1991.

21

[17] J.E. Dennis Jr. and H.F. Welaker. Inaccurracy in quasi-Newton methods: local
improvement theroems. Mathematical programming Study, 22:70–85, 1984.

[18] R. Fletcher. Practical Methods of optimization. a Wiley-Interscience
publication, Great Britain, 1987.

[19] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling
Language for Mathematical Programming. Duxbury Press / Brooks/Cole
Publishing Company, 2002.

[20] P.E. Gill, W. Murray, M.A. Saunders, and Wright M.H. Users’s guide for npsol
(version 4.0): A fortran package for non-linear programming. Technical report,
Department of Operations Research, Stanford University, Stanford, CA94305,
USA, 1986. Report SOL 862.

[21] P. Gilmore and C. T. Kelley. An implicit filtering algorithm for optimization of
functions with many local minima. SIAM Journal of Optimization, 5:269–285,
1995.

[22] Gene H. Golub and Charles F. Van Loan. Matrix Computations, third edition.
Johns Hopkins University Press, Baltimore, USA, 1996.

[23] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr (and
SifDec), a Constrained and Unconstrained Testing Environment, revisited∗.
Technical report, Cerfacs, 2001. Report No. TR/PA/01/04.

[24] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming
Codes. Lecture Notes en Economics and Mathematical Systems, 187, 1981.

[25] C. T. Kelley. Iterative Methods for Optimization, volume 18 of Frontiers in
Applied Mathematics. 1999.

[26] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for FORTRAN usage. ACM Trans. Math. Soft., 5:308–323, 1979.

[27] J.J. Moré and D.C. Sorensen. Computing a trust region step. SIAM journal
on scientif and statistical Computing, 4(3):553–572, 1983.

[28] Eliane R. Panier and André L. Tits. On combining feasibility, Descent and
Superlinear Convergence in Inequality Contrained Optimization. Mathematical
Programming, 59:261–276, 1995.

[29] S. Pazzi, F. Martelli, V. Michelassi, Frank Vanden Berghen, and Hugues Bersini.
Intelligent Performance CFD Optimisation of a Centrifugal Impeller. In Fifth
European Conference on Turbomachinery, Prague, CZ, March 2003.

[30] Stphane Pierret and Ren Van den Braembussche. Turbomachinery blade
design using a Navier-Stokes solver and artificial neural network. Journal of
Turbomachinery, ASME 98-GT-4, 1998. publication in the transactions of the
ASME: ” Journal of Turbomachinery ”.

22

[31] C. Poloni. Multi Objective Optimisation Examples: Design of a Laminar Airfoil
and of a Composite Rectangular Wing. Genetic Algorithms for Optimisation
in Aeronautics and Turbomachinery, 2000. von Karman Institute for Fluid
Dynamics.

[32] M.J.D. Powell. A direct search optimization method that models the objective
and constraint functions by linar interpolation. In Advances in Optimization
and Numerical Analysis, Proceedings of the sixth Workshop on Optimization
and Numerical Analysis, Oaxaca, Mexico, volume 275, pages 51–67, Dordrecht,
NL, 1994. Kluwer Academic Publishers.

[33] M.J.D. Powell. The use of band matrices for second derivative approximations in
trust region algorithms. Technical report, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, England, 1997. Report No.
DAMTP1997/NA12.

[34] M.J.D. Powell. On the Lagrange function of quadratic models that are defined
by interpolation. Technical report, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, England, 2000. Report No.
DAMTP2000/10.

[35] M.J.D. Powell. UOBYQA: Unconstrained Optimization By Quadratic
Approximation. Technical report, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, England, 2000. Report No.
DAMTP2000/14.

[36] M.J.D. Powell. UOBYQA: Unconstrained Optimization By Quadratic
Approximation. Mathematical Programming, B92:555–582, 2002.

[37] M.J.D. Powell. On updating the inverse of a KKT matrix. Technical report,
Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, England, 2004. Report No. DAMTP2004/01.

[38] Thomas Sauer and Yuan Xu. On multivariate lagrange interpolation. Math.
Comp., 64:1147–1170, 1995.

[39] D. E. Stoneking, G. L. Bilbro, R. J. Trew, P. Gilmore, and C. T. Kelley. Yield
optimization Using a gaAs Process Simulator Coupled to a Physical Device
Model. IEEE Transactions on Microwave Theory and Techniques, 40:1353–
1363, 1992.

[40] Frank Vanden Berghen. Intermediate Report on the development of an
optimization code for smooth, continuous objective functions when derivatives
are not available. Technical report, IRIDIA, Université Libre de Bruxelles,
Belgium, 2003. Available at http://iridia.ulb.ac.be/∼fvandenb/work/dea/.

[41] Frank Vanden Berghen. Optimization algorithm for Non-Linear, Constrained,
Derivative-free optimization of Continuous, High-computing-load Functions.
Technical report, IRIDIA, Université Libre de Bruxelles, Belgium, 2004.
Available at http://iridia.ulb.ac.be/∼fvandenb/work/thesis/.

23

[42] J. F. Wanga, J. Periaux, and Sefriouib M. Parallel evolutionary algorithms for
optimization problems in aerospace engineering. Journal of Computational and
Applied Mathematics, 149, issue 1:155–169, December 2002.

[43] D. Winfield. Function and functional optimization by interpolation in data
tables. PhD thesis, Harvard University, Cambridge, USA, 1969.

[44] D. Winfield. Function minimization by interpolation in a data table. Journal
of the Institute of Mathematics and its Applications, 12:339–347, 1973.

24

