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Abstraci — Mast of the algorithms for global eptimization
making use of the concept of population exploit very little of
the information provided by agents in the population in order
to choose the next point to evaluate. In this paper, we devejop &
new method called S.T.E.P. (Select The Easiest Paint) which
determines the next point to evaluate by analysing the usefui-
ness of evaluating the function at a certain position. Moreover,
we will see that this method permits one to precisely define the
heuristic of the search. We will alse prove its convergence
under certajn conditions.

1. Intr oduction

Most of the algorithms for global optimization making use of the
concept of population (such as Genetic Algorithms [7], Evolution
Strategies {1}, Sampling and Clustering, MultiGreedy [6], etc.)
exploil very little of the information provided by agents in the
population in order to choose the next paint 10 evaluate, and thus,
misuse the knowledge gleaned during the previous evaluations of
the function to optimize.

The first attempts Lo solve this problem were made by the immune
Recruitment Mechanism [4]. The primary idea was to determine
certain zones of recruitment, where it would be a pood ideu o
choosc the aext evaluations. The zones proposcd Lhen were
regions near the good points, and far fTom the bad ones. This
approach seems lo have given some promising resulls, but unlor-
tunately is oo vague and Loo complex to be xnalysed formally.

In this paper, we develop a new methud i determine the next
point 1o svaluate by analysing the usciulness al evaluating the
function at a certain position. Moreover. our choice will be based
on the vaiue of all the known points ol the search space.

The basic idea is that we want to cvaluate the [unction ut the poir
for which we have the greatest chance of exceeding the best pait
found until then. To simplify the method, we will divide all ih
search space into parfitions delimited by the Known poinis, an
determine the partition having the greatest chance of including
point which exceeds the best point.

In order to evaluate the difficulty ol exceeding the best point in
particular partition of the space, we will have (o define the difJ
erlty of a function. This difficulty can be any scalar value whic
gives some information about the number of {unction evaluatior
rtquired to find the piobal optimum of the function considered.
hhs in general to be closely relaled with 2 notion of neighbou

*

hood.

The first expression of the difficriry will be inspired [rom son
calculations by Richard P. Brent [5]. This is a further illustration
the benefits gained by hybridizing an evolutionary type of sear
for its exploration strength with classical optimization methods {
their exploitation strength, a viewpoint largely debated in 3]

We can now define the difficulry of a partition as the difficuliy
the casiest function passing through the points delimiing this pi
ticular partition, which exceeds the best point known. This en
ness will be defi ned in section 11,

Nole that this difficulry notion is highly suiled to idenulying |
most promising recruitment zones. Also, it defines in a rutt
direct way the heuristic of search.

In this paper, we will restrict our discussion o slobul opumizal
of one dimensional real function. Extensions to # dimensions :
combinatorial spaces are under study.



the next section, we define the diffienlry of a function, and show
w 1o derive the difficulre of a partition of the space.

¢n, we present the structure of the algorithm, and prove its con-
-gence. Finally, we will show some encouraging experimental
ults.

I1.Difficuity of a Segment

1 f({x) be a [unciion of one parameter x & [a.5] 10 maximize,
d suppose that we have already evaluated f{x) =t the points
s XppoeeiX With xp = @, x, = b,and x, <5 . Let f; = f(x;)
the value of f(x).for those points.

e can divide the search space [a.5] into # segments delimiled by

i.i'l-i

=1lx_pxl.i= 1. (EQ 1)

1z next problem is to define the difficnlty af a funciion. Qur defi-
{on will be inspired by the act that [5] :
Il we have a bound

17 (x) |l = M

then, the maximum number of [tnction evaluations required

to find the optimum value of f{x) within some prescribed
ML

(EQ 2)

wlerance / is of order

e can easily see that if M is big, we will have to wait fonger than
it were small, Therefore, this bound on the second derivative can
rve us as a definition of the difficuity of a funclion.

> calculale the difficulty D of a segment I;, we have to search [or
e function with the lowest M (the easiest) which passes through
e two extremities of the segment, and exceeds the value of the
st point found until then. Brent {5] demonstrates that this [unc-
an is a parabola.

3 simplil'y the calculations, we can translate the coordinales 5o as
place the origin at the left extremity (x; _,;_,) of the segment.
2t .

Av = ¥ - X%,

Ay = fi=fi

Foef =S
"here

;-

1l 1 15 the wlemnce {i.c. the precision required for the value of
ie optimum), We have 1o add 7 because we are only interested in
;s which exceed the value of the best point by this llerunce ar
ore.

max{/;) (EQ 3)

So, we will build a parabola passing through the twao exiremilies
ol the scgment (0.0) and (AxAy), and whose value at Lhe opli-
mum is §. We will iry then 1o determine the (absoluie) value Dol
the second derivative of this parabola, which is the dif ficutty of the
segment considered.

Consider the parabola passing through the point (0.0).

2
¥=—5x + bx {EQ 4)

with D =0. Il we want this equation to pass through the point
(Ax.A¥v), then

A
.__)J.-;-E-A;r
Ax 2

b = (EQ@5)

Tofind the optimum of the parabola, we determine the first deriva-
tiveal v.

¥ = —-Dx+h {EQ 6)
The value ol x at the optimum of the parabola is
r-L.p (EQ 7}
D

We can inject this value in (EQ 4), knowing that y = Florxr = %
{the value we need at the optimum in order to excecd the best
point so far by a lolerance of £).

D 1 2 1 .2 1
5'=—.2_E__Tb+.5b=-—--—-2_D b (EQ 8)
Combining (EQ 8) and (EQ 5}, we have
bt 4 Ay
& D+ (Ay-29)-D+-2 -0 (EQ 9)
4 Ax
Solving the equation for D, we find :
49-2 - Ay=aJT -9 By
D= - (EQ10)

Ax™

We anlv keep the solution for which £ is in the scgment consid-
ered. Then. the fi nal expression of the difficulty of a segmenl 15:

4524y + AT — 9+ Ay

A

D = (EQ11)




IIL.The Algorithm

in order (o evaluate Lhe perfommances of methods based on our
notion of dilficulty, we present here a very simple algorithm
implementing the concepts presenled above.

The idea is o start with an unique segment delimited by the
bounds of the search space (i.e. {a,5]). Al each ileration, we select
the easiest segment (the one with the lowest D}, and evaluate Lthe
point at its center. This new point divides the segment inlo two
new segments.

Evaluate f{x) at the points a and &
Initialize the first segment [ab]
while (stop criterion) do

Petermine the .segment with
the lowest D

Evaluate the point at the center of this
segment

end while

IV.Convergence

In Lthis section, we wil} delerminate an upper bound on the number
of evaluations required in order 1o find the global optimum with a
tolerance 7, knowing an upper bound on the second derivative of
the function considered..

Suppose that the second derivative of f(x) exists and is bounded
by M

W (R | o= M (EQ 12)
In order 1o find an upper bound on the number of segments neces-
sary to obtain the global optimum with a desired precision 7, it
might be interesting to look at the size of the biggest segment in
which we are sure that no better point can be found. To be cerain,
we must have:

M<D (EQ 13}

Remember that D (EQ 11) is the minimal value of the second
derivative needed in order to exceed Lhe value ol the best point
ound until then by a 1lermnee 1. (EQ 13) transforms inlox

43-2Ay + 4
ax

M=

(EQ 14)

Without any loss of peneralily, we can suppose that /;_ | = /; {i.c.
Ay = 0). Since M >0, we can transform the (EQ 14) in the lol-
fowing way :

2 I ]
AF s (49-28y+44F -5+ 4Y) (EQ 15)

Since Ax > 0, we sec that the bound over Ax is growing with j

and decreasing with Ay, and al worse, we have § =17, an
Ay = 0.The minimum scgment size is:
8-r
AI"“-" = W {EQ 1

And Lhe maximum number ol segments is the smallest power of

greater than
M
HE’.’T (6~ “’]

And the maximum number of function evaiuations is this numbs
plus one.

(EQT

Note thal the value of (EQ 17) +1 corresponds lo the upper bour
on the minimum number of function evaluations required by tt
well-known algorithm Glomin of Richard P. Brent [5]. Glomin
presented in the literature [10] as the best alporithm which puara;
tees giving lhe global optimum of a [unction (within some pr
scribed tolerance).

A fundamental difTerence between Glomin and our method is th
Glomin requires an upper bound on the second derivative of i
lunction (o optimize as an & priori condition in order 1o wo
properly. Our algorithm does not require this knowledge, and ¢
provide, al each iteration, 2 bound on the second derivative {
which we are sure of having obtained the giobal optimum.

in a way, while Glomin needs an & priori condition, our metu
pives the same condition, but & posteriori, alter cach ileration.

V.Experiments

We have tested the algorithm presented above on a set of test fur
tions taken from the literature. Note that in some cases, we ha
had to modify them a bit in order for them to be usable in o
dimension '

In each case, we have compared our alporithm S.T.EP. with Ger
sis, a Genetic Algorithm devcloped by John Grelenstetie, a
olten used as a standard ol comparison. We also compared ¢
method with Glomin, which is one of the best known ulgorith
for global opimization presented in the Numerical Analysis lile
e,

As Glomin requires an upper bound on the second derivative
the [unclion to optimize in order o work comeetly, we will co
ment, in each case, the value used [or this parumeter.

In this anicle, we consider the performance of Genesis 1o be
average of 10 independent runs (on a loganthmic scale).

We will present lor each [unction. a graph ol perfomunce she
ing (he crror in logarithmic seale with respeet o the numbel



nction evaluations. We will also present the cvolution of the
inimal segment dilficulty D (the minimum value ol the D's
“all the sepmenis). This value gives the guality of the sotution at
certain iteration. 1n [act, il the Munction 1o optimize is bounded
¢+ D ... wearce sure that the best point so far is the global opti-
um.

ae test functions will be presented by order of dif fieulty,

. Parabola

very method of optimization should be efficient on simple [unc-
ons. The first problem presented is 1o minimize a parabola
finedon {~12] :

Jlx) = x* (EQ 18)
GURE1. Parabola
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or this function, we compare our algorithm with Genesis only.
lornin performs a Kind of quadratic interpolation lo delermine its
X1 try, and finds the optimum in four evaluations.

I[GURE 2. Periormance for the Parabola
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he FIGURE 3. shows the variation ol D, according to the
umber of function evaluations. Note that D, ;, is roughly propor-
onal to the square of the number of evaluations.
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B.  Brent's Fifth Function

This unclion is the last one presented in [5) by Brent 1o demon-
strate the performance of his algonthm Glomin. His qualified as
difficult by Brent in his book.

Jx) = (x=sin{s)) e~

 (EQ19)
o minimize over [-10,10].
FIGURE 4. Brentn®s
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In order io show the dependency benween the performance of Glo-
min and the bound on the second denivative given as an & priori
condition, we have used the bounds Af - 72 (noted “Glomin™),
and M = 720 (noted “Glomin >"}.

FIGURE 5. Performance for Brant n®5
Number of evaluations -
5 5 5 5 5 65 5 & & 0
-— [l ™~ m - (¥:] [in] M~ m o [
1 R T
0,01
_0,0001
E 1E-06
* 1E-08
1E-10
1E-12
FIGUREG. D, for Brentn°5
200 T
150 =
min
'ICO.._
50+
] t : } + + ; + } }
" 8 5 &5 & & 5 5 &5 &
— (4] m A=d ur (i) (8 m‘ (=41

Number of function evaluations

C. Michalewicz’s First Function

This [unction is presenied in {9 to demonstrate the el ficiency of
Genelic Algorithms. '
JSlx) = x-sin (HO-x) (EQ 20)

to minimize over {—1,2].



FIGURE 7. Michalewicz n°1

For Glomin, we used 2 bound (over the second derivative) of 100
(*“Glomin <), 400 (“Glomin™), and 40,000 (“Glomin >").

FIGURE 8.
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We can nolice the lack of robustness of Glomin i we reduce the
bound on the second derivative too much.
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D.  Michalewicz’s Second Function

This lunction is introduced in [9] to evaluate the performances of
certain scaling methods of GA.

{1 . a0
z sin (x) - (sin (20)
I

1= |

Jlx) = Eaz

to maximize over [Q.).

FIGURE 10. Michalewicz n°2
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For this function, we have determined by hand an upper bound
630,000 on the second derivative. This value will be used as U
parameter of Glomin .

FGURE11. Perormance for Michalewicz n°2
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Note that in this case, Genesis seems o be blocked inz local opt
mum for about 50% of the experiments.

FIGURE12. D_. for Michalewicz n®2

600000
450000
T 300000
150000

O +—+—F et —4

T &5 B 5 585 5 5 T B S5

— N M T M O M~ D o

Number of function evaluations

VI.Conclusions

In this anicle, we have presented a new, elficient and robu:
method [or optimization in one dimension.

We have seen that in all the cases considered, 8.T.E.R performe
better than the other methods. Morcover, S.T.EP. gIVes a puarar
tee of convergence, in a lime comparable o the one needed b
Glomin. No other method gives such a guarantee.

Besides, while (Hlomin needs & priori information about the func
tion (0 optimize (and is very sensitive (o a variation of this param
eter), S.T.E.P. doesn’| require such information, and in additior
provides the equivalent data necessary to validale the best poin
found as u global optimum aller each itcration.



