
Classification Trees: C4.5

Vanden Berghen Frank.

IRIDIA, Universit Libre de Bruxelles

fvandenb@iridia.ulb.ac.be

7-7-2003

1 Tree Generation: Gain criteria.

Imagine selecting one example at random from a set T of training examples and announcing it
belongs to the class Ci, i = 1, . . . , k. This message has the probability:

|Ci|

|T |
(1)

. Where |Ci| is the number of examples which belongs to the class Ci. The information contained
in this announce is:

− log2

|Ci|

|T |
bits. (2)

In general, if we are given a probability distribution P = (p1 = |C1|
|T | , p2 = |C2|

|T | , .., pk = |Ck|
|T |) then

the Information conveyed by this distribution (also called the Entropy of P), is:

I(P) = −

k∑

i=1

pi ∗ log(pi) (3)

When applied to the set T of training example, I(P) measures the average amount of informa-
tion (bits) needed to identify the class of an example of T (it’s a weighted sum of the k different
equations 2).

For example, if P is (0.5, 0.5) then I(P) is 1, if P is (0.67, 0.33) then I(P) is 0.92, if P is (1, 0)
then I(P) is 0. [Note that the more uniform is the probability distribution, the greater is its
information.]

An other example: We want to known if a golfer will play or not based on the following data:

OUTLOOK | TEMPERATURE | HUMIDITY | WINDY | PLAY

===

sunny | 85 | 85 | false | Don’t Play

sunny | 80 | 90 | true | Don’t Play

overcast| 83 | 78 | false | Play

rain | 70 | 96 | false | Play

rain | 68 | 80 | false | Play

1

1 TREE GENERATION: GAIN CRITERIA. 2

rain | 65 | 70 | true | Don’t Play

overcast| 64 | 65 | true | Play

sunny | 72 | 95 | false | Don’t Play

sunny | 69 | 70 | false | Play

rain | 75 | 80 | false | Play

sunny | 75 | 70 | true | Play

overcast| 72 | 90 | true | Play

overcast| 81 | 75 | false | Play

rain | 71 | 80 | true | Don’t Play

We will build a classifier which, based on the features OUTLOOK, TEMPERATURE, HUMID-
ITY and WINDY will predict wether or not the golfer will play. There is 2 classes: (play) and
(don’t play). There is 14 examples. There is 5 examples which gives as result ”don’t play” and
9 examples which gives as result ”will play.”

We will thus have Info(T) = I(9/14, 5/14) = 0.94

Consider a similar measurement after T has been partitioned in accordance with the n outcomes
of a test on the feature X. (in the golfer example, X can be a test on OUTLOOK, TEMPER-
ATURE, ...). The expected information requirement can be found as a weighted sum over the
subsets:

Info(X, T) =
n∑

i

|Ti|

|T |
Info(Ti) (4)

where T1, T2, . . . , Tm is the partition of T induced by the value of X.

In the case of our golfing example, for the attribute Outlook we have:

Info(Outlook, T) = 5/14 ∗ I(2/5, 3/5) + 4/14 ∗ I(4/4, 0) + 5/14 ∗ I(3/5, 2/5) = 0.694 (5)

Consider the quantity Gain(X, T) defined as:

Gain(X, T) = Info(T) − Info(X, T) (6)

This represents the difference between the information needed to identify an element of T and
the information needed to identify an element of T after the value of attribute X has been ob-
tained, that is, this is the gain in information due to attribute X.

In our golfing example, for the Outlook attribute the gain is:

Gain(Outlook, T) = Info(T) − Info(Outlook, T) = 0.94 − 0.694 = 0.246. (7)

If we instead consider the attribute Windy, we find that Gain(Windy, T) = 0.048. Thus OUT-
LOOK offers a greater informational gain than WINDY.

We can use this notion of gain to rank attributes and to build decision trees where at each node
is located the attribute with greatest gain among the attributes not yet considered in the path
from the root.

In the Golfing example we will obtain the following decision tree:

2 TREE GENERATION: GAIN RATIO CRITERIA. 3

Outlook

/ | \

/ | \

overcast / |sunny \rain

/ | \

Play Humidity Windy

/ | | \

/ | | \

<=75 / >75| true| \false

/ | | \

Play Don’tPlay Don’tPlay Play

2 Tree Generation: Gain Ratio criteria.

The notion of Gain introduced earlier tends to favor test on features that have a large number of
outcomes (when n is big in equation 4). For example, if we have a feature X that has a distinct
value for each record, then Info(X, T) is 0, thus Gain(X, T) is maximal. To compensate for
this Quinlan suggests using the following ratio instead of Gain:

GainRatio(X,T) =
Gain(X,T)

SplitInfo(X,T)
(8)

.

Consider the information content of a message that indicate not the class to which the case
belongs, but the outcome of the test on feature X. By analogy with equation 3, we have

SplitInfo(X, T) = −

n∑

i

|Ti|

|T |
log2

|Ti|

|T |
(9)

.

The GainRatio(X, T) is thus the proportion of information generated by the split that is useful
for the classification.

In the case of our golfing example GainRatio(OUTLOOK, T) = 0.246/1.577 = 0.156 and
GainRatio(WINDY, T) = 0.048/0.985 = 0.049.

We can use this notion of GainRatio to rank attributes and to build decision trees where at each
node is located the attribute with greatest GainRatio among the attributes not yet considered
in the path from the root.

We can also deal with the case of features with continuous ranges. Say that feature X has
a continuous range. We examine the values for this features in the training set. Say they
are, in increasing order, A1, A2, . . . , Am. Then for each value Aj , j = 1, 2, ..m we partition
the records into 2 sets : the first set have the X values up to and including Aj and the sec-
ond set have the X values greater than Aj . For each of these m partitions we compute the
GainRatio(X(j), T) j = 1, 2, ..m, and choose the partition that maximizes the gain. If all fea-
tures are continuous, we will obtain a binary tree.

3 PRUNING TREES. 4

3 Pruning Trees.

Pruning a tree is the action to replace a whole subtree by a leaf. The replacement takes place
if the expected error rate in the subtree is greater than in the single leaf. We will start by gen-
erating the whole (generally overfitted) classification tree and simplify it using pruning just after.

The error estimates for leaves and subtrees are computed assuming that they were used to clas-
sify a set of unseen cases of the same size as the training set. So a leaf covering N training
cases (E of them incorrectly) with a predicted error rate of UCF (E, N) (with UCF : the binomial
distribution, CF : the Confidence Level) would give rise to a predicted N × UCF (E, N) errors.
Similarly, the number of predicted errors associated with a (sub)tree is just the sum the the
predicted errors of its branches.

An example: Let’s consider a dataset of 16 examples describing toys. We want to know if the
toy is fun or not.

COLOR | MAX NUMBER OF PLAYERS | FUN

===

red | 2 | yes

red | 3 | yes

green | 2 | yes

red | 2 | yes

green | 2 | yes

green | 4 | yes

green | 2 | yes

green | 1 | yes

red | 2 | yes

green | 2 | yes

red | 1 | yes

blue | 2 | no

green | 2 | yes

green | 1 | yes

red | 3 | yes

green | 1 | yes

We obtain the following classification tree:

Color

/ | \

/ | \ pruning

red / |green \blue =================> yes

/ | \

yes yes no

(leaf1) (leaf2) (leaf3)

The predicted error rate for leaf 1 is 6×U25%(0, 6) = 6×0.206. The predicted error rate for leaf
2 is 9 × U25%(0, 9) = 9 × 0.143. The predicted error rate for leaf 3 is 1 × U25%(0, 1) = 1 × 0.75.
The total number of predicted error for this subtree is 6× 0.206 + 9× 0.143 + 1× 0.75 = 3.273.
If the tree were replaced by the simple leaf ”Yes”, the predicted error rate would have been:

4 LIMITATIONS 5

16 × U25%(1, 16) = 16 × 0.157 = 2.512. Since the simple leaf has a lower predicted error
(2.512 < 3.273), the tree is pruned to a leaf.

4 Limitations

The major limitation is that the feature space can only be partitioned in boxes parallel to axes
of the space.

The implementation of the classification-tree algorithm I realized is only able to classify contin-
uous features. This means, that it can only generate binary trees. We can still use the program
with special discrete features like MAX NUMBER OF PLAYERS=(1,2,3,4) in the toy example
above. The discrete feature must exhibit some ordering property. This means that discrete
features like COLOR=(red,green,blue) are not allowed.

5 Bagging and Feature selection

We can use many classifiers and make a vote to obtain the final class of the examples we want
to classify. How does it help? Let’s assume you have 10 decision trees T1, T2, . . . , T10. You want
to make classification in 3 classes C1, C2, C3. Let’s now assume that the first 4 trees T1, . . . , T4

always recognize and classify correctly class C1 (they are specialized for C1). The other trees
are specialized in other classes. Let’s now assume you want to classify a new example. This
example belongs to C1. The trees T1, . . . , T4 will answer C1. The other trees will gives random
answer which will form some ”uniformly distributed noise” during the vote. The result of the
vote will thus be C1. We just realized an error de-correlation.

How to generate the 10 trees? We don’t have to know what are the specialty of each tree.
We only have to build trees that have various behavior. We will build the 10 different trees
using the algorithm previously described on 10 different sets of examples. How do we generate
these 10 sets of example? We will use only a small part (called a bootstrap) of the full set of
example (this technique is called BAGGING). Each bootstrap (there are here 10) will be build
using random example taken from the full set of example (random selection with duplication
allowed). We will also use a small subset of all the features available (this technique is called
FEATURE SELECTION). For each bootstrap, we will use different randomly chosen features
(random selection with duplication forbidden). The combination of BAGGING and FEATURE
SELECTION is called BAGFS.

What’s the optimal number of trees? Can we take the highest number possible? no, because
another phenomena will appear: the OVERFITING. The classifier lose its generalization ability.
It can only classify the examples which were used to build it. It cannot classify correctly unseen
examples.

