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Abstract

Lazy learning is a memory-based technique that, once a query is re-

ceived, extracts a prediction interpolating locally the neighboring exam-

ples of the query which are considered relevant according to a distance

measure. This toolbox implements a data-driven method to select on a

query-by-query basis the optimal number of neighbors to be considered for

each prediction. As an e�cient way to identify and validate local mod-

els, the recursive least squares algorithm is adopted. Furthermore, beside

the winner-takes-all strategy for model selection, the toolbox implements

also a local combination, performed on a query-by-query basis, of the most

promising models.

This manual describes the functions included in the toolbox as well as

the algorithms implemented and the underlying theory.

1 Introduction

The Lazy Learning Toolbox For use with Matlab
c

consists of four functions,

written in C language, that implement the lazy learning methods for regression

developed at IRIDIA, Universit�e Libre de Bruxelles.

The software is part of a larger IRIDIA project, whose goal is the implementa-

tion of a set of local modeling approaches for data analysis and regression (Bon-

tempi et al., 1999).

The aim of this manual is to provide the user with a description of the func-

tions composing the toolbox. Nevertheless, we try also to present in a formal way

the algorithms we developed, and the underlying theory.

1



2 Technical Report TR/IRIDIA/99-7. Iridia, Universit�e Libre de Bruxelles.

The Toolbox was developed for Matlab 5.2 on a PC running Red Hat Linux 5.0

for the joy of all its users. The authors enthusiastically recommend the principal

software used: GNU Emacs, LATEX2", gcc, and Matlab for Linux.

The latest version of the IRIDIA \Lazy Learning Toolbox for Use with Mat-

lab" is available at http://iridia.ulb.ac.be/~lazy/. This manual is dis-

tributed together with the Toolbox but is also available as a technical report

of the IRIDIA laboratory, Universit�e Libre de Bruxelles (TR/IRIDIA/99-7).

In what follows, we refer to the current release 1.0 of the Toolbox which is,

by the way, also the �rst \o�cial" one.

This manual is organized as follows: Section 1 introduces lazy learning in gen-

eral and the main features of the Toolbox. In Sections 2 to 5 we give a theoretical

background on lazy learning and we derive the algorithms implemented in the

Toolbox. Section 6 describes the functions composing the toolbox and Section 7

shows how these functions can be used to perform a prediction given a database

of examples.

Legal issues and conditions

By using the toolbox the user agrees to all of the following:

� If any work where this toolbox has been used is going to publish, please

remember that the software was obtained free of charge and please include

a reference to:

Birattari M. , Bontempi G. & Bersini H. 1999. \Lazy

learning meets the recursive least-squares algorithm", in

Advances in Neural Information Processing Systems 11,

M.S. Kearns, S.A. Solla, and D.A. Cohn, Eds., MIT

Press, Cambridge, MA.

and the url of the toolbox home page: http://iridia.ulb.ac.be/~lazy/.

If the work is in the control �eld, please include also a reference to:

Bontempi G. , Birattari M. & Bersini H. 1999. Lazy

learning for local modeling and control design. Interna-

tional Journal of Control. vol. 72, no. 7/8, pp. 643{658.

� The toolbox is copyrighted by Mauro Birattari, Gianluca Bontempi, and

IRIDIA, Universit�e Libre de Bruxelles. It is not permitted to use any part

of this software in commercial and/or military applications.

� The toolbox is provided \as-is" without warranty of any kind, either express

or implied, including but not limited to the implied warranties or conditions

of merchantability or �tness for a particular purpose. In no event shall

Mauro Birattari, Gianluca Bontempi, and/or the IRIDIA-ULB laboratory
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be liable for any special, incidental, indirect, or consequential damages of

any kind, or damages whatsoever resulting from loss of use, data, or pro�ts,

whether or not the authors have been advised of the possibility of such

damages, and/or on any theory of liability arising out of or in connection

with the use or performance of this software.

Matlab is a trademark of The Math Works, Inc.

2 Lazy Learning

Lazy learning (Aha, 1997) postpones all the computation until an explicit request

for a prediction is received. The request is ful�lled interpolating locally the

examples considered relevant according to a distance measure. Each prediction

requires therefore a local modeling procedure that can be seen as composed of

a structural and of a parametric identi�cation. The parametric identi�cation

consists in the optimization of the parameters of the local approximator. On the

other hand, structural identi�cation involves, among other things, the selection

of a family of local approximators, the selection of a metric to evaluate which

examples are more relevant, and the selection of the bandwidth which indicates

the size of the region in which the data are correctly modeled by members of the

chosen family of approximators. For a comprehensive tutorial on local learning

and for further references see Atkeson et al. (1997).

This toolbox implements a method in which the family of local approximators

and the bandwidth are selected locally and tailored for each query point by means

of a local leave-one-out cross-validation.

In what follows, the problem of bandwidth selection is reduced to the selection

of the number k of neighboring examples which are given a non-zero weight in

the local modeling procedure.

As far as the family of local approximator is concerned, the toolbox considers

polynomials of di�erent degrees and allows a local model selection, as well as a

local combination of approximators of di�erent degrees. In both cases, the models

are compared on the basis of a local leave-one-out cross-validation.

Each time a prediction is required for a speci�c query point, a set of local

models is identi�ed, each with a di�erent polynomial degree and each including

a di�erent number of neighbors. The generalization ability of each model is

then assessed through a local cross-validation procedure. Finally, a prediction is

obtained either combining or selecting the di�erent models on the basis of some

statistic of their cross-validation errors.

The major feature of this toolbox consists in the adoption of the recursive least

squares algorithm for the identi�cation of the local models. This is an appealing

and e�cient solution to the intrinsically incremental problem of identifying and

validating a sequence of local linear models centered in the query point, each
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including a growing number of neighbors. It is worth noticing here that a leave-

one-out cross-validation of each model considered does not involve any signi�cant

computational overload, since it is obtained though the PRESS statistic (Myers,

1990) which simply uses partial results returned by the recursive least squares

algorithm.

3 Local Weighted Regression

Given two variables x 2 <m and y 2 <, let us consider the mapping f: <m ! <,
known only through a set of n examples f(xi; yi)g

n

i=1 obtained as follows:

yi = f(xi) + "i; (1)

where 8i, "i is a random variable such that E["i] = 0 and E["i"j] = 0, 8j 6= i,

and such that E["r
i
] = �r(xi), 8r � 2, where �r(�) is the unknown r

th moment of

the distribution of "i and is de�ned as a function of xi. In particular for r = 2,

the last of the above mentioned properties implies that no assumption of global

homoscedasticity is made.

The problem of local regression can be stated as the problem of estimating

the value that the regression function f(x) = E[yjx] assumes for a speci�c query

point x, using information pertaining only to a neighborhood of x.

In what follows, only polynomials of degree one will be considered as local

approximators. The extension to generic polynomials, and in particular to poly-

nomials of degree zero and two, will be proposed at the end of the section.

Given a query point xq, and under the hypothesis of a local homoscedasticity

of "i, the parameter �
1
of a local �rst-degree polynomial approximating f(�) in a

neighborhood of xq, can be obtained solving the local polynomial regression:

nX
i=1

��
yi � x0

1;i
�

1

�2
K

�
D(xi;xq)

h

��
; (2)

where, given a metric on the space <m, D(xi;xq) is the distance from the query

point to the ith example, K(�) is a weight function, h is the bandwidth, and where

the vectors x1;i have been obtained by pre-appending a constant value 1 to each

vector xi in order to consider a constant term in the regression.

In matrix notation, the solution of the above stated weighted least squares

problem is given by:

�̂
1
= (X0

1
W0WX1)

�1X0

1
W0Wy = (Z0Z)�1Z0v = PZ0v; (3)

where X1 is a matrix whose ith row is x0
1;i
, y is a vector whose ith element is yi,

W is a diagonal matrix whose ith diagonal element is wii =
p
K (D(xi;xq)=h),

Z = WX1, v = Wy, and the matrix X0

1
W0WX1 = Z0Z is assumed to be non-

singular so that its inverse P = (Z0Z)�1 is de�ned.
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Once obtained the local �rst-degree polynomial approximation, a prediction

of yq = f(xq), is �nally given by:

ŷ1;q = x0
1;q
�̂

1
: (4)

Moreover, exploiting the linearity in the parameters of the local approximator,

a leave-one-out cross-validation estimation of the error variance E[(yq � ŷ1;q)
2]

can be obtained without any signi�cant overload. In fact, using the PRESS

statistic (Myers, 1990), it is possible to calculate the error ecv
1;j

= yj � x0
1;j
�̂
�j

1
,

without explicitly identifying the parameters �̂
�j

1
from the examples available

with the j
th removed. The formulation of the PRESS statistic for the case at

hand is the following:

e
cv

1;j
= yj � x0

1;j
�̂
�j

1
=

yj � x0
1;j
PZ0v

1� z0
j
Pzj

=
yj � x0

1;j
�̂

1

1� hjj
; (5)

where z0
j
is the jth row of Z and therefore zj = wjjx1;j, and where hjj is the j

th

diagonal element of the Hat matrix H = ZPZ0 = Z(Z0Z)�1Z0.

In order to extend this method to polynomials of generic degree d, it is suf-

�cient to substitute to the matrix X1 a matrix Xd whose i
th row contains the

constant 1, the components of the ith example xi together with their powers up

to the dth , and the appropriate cross-terms. In particular, if d = 0 the matrix Xd

reduces to a vector X0 whose elements are all equal to the constant 1. For d = 2,

the ith row of X2 is a vector of (m+ 1)(m+ 2)=2 elements which is composed by

the homogeneous polynomial of degree zero, i.e. the constant 1, by the homoge-

neous polynomial of degree one, i.e. the vector xi itself, and by the homogeneous

polynomial of degree two in the m dimensional space <m.

4 Recursive Local Regression

Also in this section we will present the case in which the local model is a poly-

nomial of degree one. Again, the extension to generic polynomial approximators

of any degree is straightforward.

We will assume also that a metric on the space <m is given. All the attention

will be thus centered on the problem of bandwidth selection.

If as a weight function K(�) the indicator function

K

�
D(xi;xq)

h

�
=

(
1 if D(xi;xq) � h,

0 otherwise;
(6)

is adopted, the optimization of the parameter h can be conveniently reduced

to the optimization of the number k of neighbors to which a unitary weight is

assigned in the local regression evaluation. In other words, we reduce the problem
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of bandwidth selection to a search in the space of h(k) = D(x(k);xq), where x(k)

is the kth nearest neighbor of the query point.

The main advantage deriving from the adoption of the weight function de�ned

in Eq. 6, is that, simply by updating the parameter �̂
1
(k) of the model identi�ed

using the k nearest neighbors, it is straightforward and inexpensive to obtain

�̂
1
(k + 1). In fact, performing a step of the standard recursive least squares

algorithm (Bierman, 1977), we have:8>>>>>><
>>>>>>:

P(k + 1) = P(k)�
P(k)x1(k + 1)x0

1
(k + 1)P(k)

1 + x0
1
(k + 1)P(k)x1(k + 1)


(k + 1) = P(k + 1)x1(k + 1)

e(k + 1) = y(k + 1)� x0
1
(k + 1)�̂

1
(k)

�̂
1
(k + 1) = �̂

1
(k) + 
(k + 1)e(k + 1)

(7)

where P(k) = (Z0Z)�1 when h = h(k), and x1(k) is the vector obtained pre-

appending the constant 1 to the k
th nearest neighbor of the query point, and

where y(k) is the corresponding output.

Moreover, once the matrix P(k + 1) is available, the leave-one-out cross-

validation errors can be directly calculated without the need of any further model

identi�cation:

e
cv

1;j
(k + 1) =

yj � x0
1;j
�̂

1
(k + 1)

1� x0
1;j
P(k + 1)x1;j

; 8j : D(xj;xq) � h(k + 1): (8)

It will be useful in the following to de�ne for each value of k the [k � 1] vector

ecv
1
(k) that contains all the leave-one-out errors associated to the model �̂

1
(k).

Once an initialization �̂
1
(0) = ~�

1
and P(0) = ~P is given, Eq. 7 and Eq. 8 re-

cursively evaluate for di�erent values of k a local approximation of the regression

function f(�), a prediction of the value of the regression function in the query

point, and the vector of leave-one-out errors from which it is possible to extract

an estimate of the variance of the prediction error. Notice that ~�
1
is an a pri-

ori estimate of the parameter and ~P is the covariance matrix that re
ects the

reliability of ~�
1
(Bierman, 1977). For non-reliable initialization, the following is

usually adopted: ~P = �I, with � large and where I is the identity matrix.

The recursive algorithm described by Eq. 7 and Eq. 8 returns for a given query

point xq, a set of predictions ŷ1;q(k) = x0
1;q
�̂

1
(k), together with a set of associated

leave-one-out error vectors ecv
1
(k). On the basis of these cross-validation errors,

di�erent statistics can be evaluated in order to compare the models obtained.

Among them, the most natural and easy to implement is the mean square error :

mse
cv

1
(k) =

1

k

kX
j=1

e
cv

1;j
(k): (9)
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This same method described by Eq. 7 and Eq. 8 can be adopted also to identify a

generic local model �̂
d
, which is a polynomial of a generic degree d, if the matrix

Xd is created as described at the end of Section 3. In this toolbox, the models of

second degree are indeed identi�ed and validated using this recursive method.

Local constant models

As far as constant models are concerned, an even more e�cient method is avail-

able (Birattari & Bontempi, 1999) to compute ŷ0;q(k) = �̂
0
(k). In this toolbox

the following equations are adopted:

ŷ0;q(k) =
k � 1

k
ŷ0;q(k � 1) +

1

k
y(k); (10)

and

mse
cv

0
(k) =

k(k � 2)2

(k � 1)3
mse

cv

0
(k � 1) +

1

k � 1

�
y(k)� ŷ0;q(k � 1)

�2
; (11)

where ŷ0;q(0), and the recursion on mse
cv

0
(k) is started for k = 2: as a detail, it

can be noticed that mse
cv

0
(1) does not need to be initialized since for k = 2 the

�rst term in Eq. 11 equals zero. Equations 10 and 11 allow the exact computation

of the leave-one-out mean square error, without the need of explicitly computing

each single cross-validation error ecv
0;j
(k).

5 Local Model Selection and Combination

From the information made available by Eq. 7 and 8 and/or by Eq. 10 and 11,

a �nal prediction ŷq of the value of the regression function can be obtained in

di�erent ways. Two main paradigms deserve to be considered: the �rst is based

on the selection of the best approximator according to a given criterion, while the

second returns a prediction as a combination of more local models.

We will consider now the case in which the degree d of the polynomial ap-

proximators has been selected a priori by the analyst. The extension to the

automatic selection among or combination of local polynomials of di�erent de-

gree is proposed in a following subsection.

If the selection paradigm, frequently called winner-takes-all, is adopted, the

most natural way to extract a �nal prediction ŷd;q, consists in comparing, on the

basis of the classical mean square error criterion, the prediction obtained for each

value of k, given the degree d of the local approximator.

ŷd;q = x0
d;q
�̂

d
(k̂); with k̂ = arg min

k2K(d)
mse

cv

d
(k); (12)

where K(d) is a range, de�ned by the analyst, from which the optimal number of

neighbors is selected.
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As an alternative to the winner-takes-all paradigm, we explored also the ef-

fectiveness of local combinations of estimates (Wolpert, 1992). Adopting also in

this case the mean square error criterion, the �nal prediction of the value yq is

obtained as a weighted average of the best b models, where b is a parameter of

the algorithm. Suppose the predictions ŷd;q(k) and the error vectors ecv
d
(k) have

been ordered creating a sequence of integers fkig so that mse
cv

d
(ki) � mse

cv

d
(kj),

8i < j. The prediction of yq is given by

ŷd;q =

P
b

i=1 �i ŷd;q(ki)P
b

i=1 �i

; (13)

where the weights are the inverse of the mean square errors: �i = 1=mse
cv

d
(ki).

This is an example of the generalized ensemble method (Perrone & Cooper, 1993).

Selection of the polynomial degree of the local approximator

The same strategies described in Eq. 12 and 13 can be adopted also to se-

lect/combine models of di�erent degrees, by comparing the predictions obtained

for each ordered pair <d; k> on the basis of the mean square error criterion:.

In this case the winner-takes-all strategy is implemented as follows:

ŷq = x0
d̂;q
�̂

d̂
(k̂); with <d̂; k̂>= arg min

<d;k>

mse
cv

d
(k); (14)

where d 2 D, k 2 K(d) and where D and K(d) are appropriate ranges de�ned by

the analyst.

As far as the local combination is concerned, let us consider a sequence

f< di; ki >g ordered so that mse
cv

di
(ki) � mse

cv

dj
(kj), 8i < j. The prediction

of yq is given in this case by:

ŷq =

P
b

i=1 �i ŷdi;q(ki)P
b

i=1 �i

; (15)

where b is the number of local models the analyst wants to combine, and where

the weights are the inverse of the mean square errors: �i=1=mse
cv

di
(ki).



M. Birattari and G. Bontempi: The Lazy Learning Toolbox | Version 1.0 9

6 The Toolbox

In this section we present a detailed description of all the function composing the

toolbox, and of their external behavior. In the following, we will assume that

the reader is somehow acquainted with Matlab, that she is willing to test this

toolbox (!), and that on her computer Matlab 5:2 or higher and an appropriate

C compiler are correctly installed.

A notation will be introduced which does not match exactly the one used in

the previous section but is closer to the Matlab notation. Any potential source of

confusion will be handled by spelling out the new meaning of the symbols which

are re-de�ned and by using a slightly di�erent font.

6.1 Local Constant Models

For each query, the function conLL.c identi�es and validates using a growing

number of nearest-neighbors, a number of di�erent local polynomial approxima-

tors of degree 0 (see Eq. 10, and 11). Among these models, the best one is selected

by Eq. 12.

The function can be compiled from the Matlab command line as follows:

>> mex -O conLL.c

This creates in the current directory the �le conLL.ext where the extension ext

assumes di�erent forms according to the platform. From now on, if the current

directory is in the Matlab path, the function conLL can be called no matter what

the current directory is.

The general way to call this function is:

>> [h,s,t,k,H,S,T,I] = conLL(X,Y,Q,id par);

where the variable involved have the following meaning:

Input:

X[n,m] Examples: Input matrix

Y[n,1] Examples: Output vector

Q[q,m] Queries: Input matrix

id par[2,1] Identi�cation parameters: minimum and

maximum number of neighbors to be

considered: id par=[idm;idM]

The ith row of the matrix X[n,m] is the ith input example xi, and the ith element

of the vector Y[n,1] is the corresponding output yi. Similarly, each row of the

matrix Q[q,m] describes a query point.
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The 4th input id par[2,1] de�nes the range K(0) = fidm; : : : ; idM g from

which the best number of neighbors is selected (see Eq. 12).

The function accepts also a 5th input: a vector W[m,1] of weights that can

be used to modify the relative contribution of the d dimensions in the distance

function.

The nearest-neighbors of each query point are obtained through an exhaustive

search in the <m

1 metric space (Manhattan distance):

D(xi;xq) =

P
m

j=1W(j) jxi(j) � xq(j)jP
m

j=1W(j)

; (16)

where W(j), xi(j), and xq(j) are the j
th components of the vectors W[m,1], xi, and

xq respectively; and where W(j) = 1, 8j, if the vector W[m,1] is not given.

Output:

h[q,1] Prediction with the selected number of

neighbors for each query

s[q,1] Leave-one-out error of the prediction

obtained with the selected number of

neighbors for each query

t[0,0] DUMMY VARIABLE: for compatibility

purposes

k[q,1] Selected number of neighbors for each

query

H[idM,q] All the predictions obtained for each

query using a number of neighbors in the

range between 1 and idM (see id par)

S[idM,q] Leave-one-out error of all the predictions

obtained for each query in H[idM,q]

T[0,0,0] DUMMY VARIABLE: for compatibility

purposes

I[idM,q] Index of the idM-nearest-neighbors of

each query point

The jth element of the vector h[q,1] is the prediction relative to the jth query

obtained with the selected number of nearest-neighbors.

The jth element of the vector s[q,1] is the leave-one-out mean square error

of prediction relative to the j
th query, obtained with the selected number of

nearest-neighbors.
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The jth element of the vector k[q,1] is the number of neighbors which has

been selected in cross validation in order to answer to the jth query.

The element in position (k; j) of the matrix H[idM,q] is the prediction of the

output to the jth query, yielded by the approximator identi�ed with the �rst k

nearest-neighbors of the jth query itself.

The element in position (k; j) of the matrix S[idM,q] is the leave-one-out

mean square error of the approximator identi�ed with the �rst k nearest-neighbors

of the jth query point.

The element in position (k; j) of the matrix I[idM,q] is the index of the kth

nearest-neighbor of the jth query point, i.e. the original position in the matrix

X[n,m] of the kth neighbor of the jth query point.
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6.2 Local Linear Models

For each query, the function linLL.c identi�es and validates using a growing

number of nearest-neighbors, a number of di�erent local polynomial approxima-

tors of degree 1 (see Eq. 7, eq:RecursivePress, and 9). Among these models, the

best one is selected by Eq. 12.

The function can be compiled from the Matlab command line as follows:

>> mex -O linLL.c

This creates in the current directory the �le linLL.ext where the extension ext

assumes di�erent forms according to the platform. From now on, if the current

directory is in the Matlab path, the function linLL can be called no matter what

the current directory is.

The general way to call this function is:

>> [h,s,t,k,H,S,T,I] = linLL(X,Y,Q,id par);

where the variable involved have the following meaning:

Input:

X[n,m] Examples: Input matrix

Y[n,1] Examples: Output vector

Q[q,m] Queries: Input matrix

id par[2,1] Identi�cation parameters: minimum and

maximum number of neighbors to be

considered: id par=[idm;idM]

The ith row of the matrix X[n,m] is the ith input example xi, and the ith element

of the vector Y[n,1] is the corresponding output yi. Similarly, each row of the

matrix Q[q,m] describes a query point.

The 4th input id par[2,1] de�nes the range K(1) = fidm; : : : ; idM g from

which the best number of neighbors is selected (see Eq. 12).

The function accepts also a 5th input: a scalar LAMBDA[1,1] which is a regu-

larization parameter. The default value is LAMBDA = 1E6. This parameter is used

to de�ne the diagonal matrix ~P = �I, used to initialize the recursive algorithm

described in Eq. 7.

The function accepts also a 6th input: a vector W[m,1] of weights that can

be used to modify the relative contribution of the d dimensions in the distance

function.

The nearest-neighbors of each query point are obtained through an exhaustive

search in the <m

1 metric space (Manhattan distance):

D(xi;xq) =

P
m

j=1W(j) jxi(j) � xq(j)jP
m

j=1W(j)

; (17)
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where W(j), xi(j), and xq(j) are the j
th components of the vectors W[m,1], xi, and

xq respectively; and where W(j) = 1, 8j, if the vector W[m,1] is not given.

Output:

h[q,1] Prediction with the selected number of

neighbors for each query

s[q,1] Leave-one-out error of the prediction

obtained with the selected number of

neighbors for each query

t[m+1,q] Selected model for each query

k[q,1] Selected number of neighbors for each

query

H[idM,q] All the predictions obtained for each

query using a number of neighbors in the

range between 1 and idM (see id par)

S[idM,q] Leave-one-out error of all the predictions

obtained for each query in H[idM,q]

T[m+1,idM,q] All the models considered for each query

I[idM,q] Index of the idM-nearest-neighbors of

each query point

The jth element of the vector h[q,1] is the prediction relative to the jth query,

obtained with the selected number of nearest-neighbors.

The jth column of the matrix t[m+1,q] is a vector that contains the param-

eters of the model, obtained with the selected number of nearest-neighbors, used

to answer to the jth query. Each column is then:

ja0; a1; a2; : : : ; amj
0 (18)

where a0 is the constant term of the model, and the generic ai is the parameter

associated with the ith input variable x(i). Remark: A translation of the axes is

considered which centers all the local models in the respective query point.

The jth element of the vector s[q,1] is the leave-one-out mean square error

of prediction relative to the j
th query, obtained with the selected number of

nearest-neighbors.

The jth element of the vector k[q,1] is the number of neighbors which has

been selected in cross validation in order to answer to the jth query.

The element in position (k; j) of the matrix H[idM,q] is the prediction of the

output to the jth query, yielded by the approximator identi�ed with the �rst k

nearest-neighbors of the jth query itself.
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The element in position (k; j) of the matrix S[idM,q] is the leave-one-out

mean square error of the approximator identi�ed with the �rst k nearest-neighbors

of the jth query point.

The element in position (i; k; j) of the matrix T[m+1,idM,q] is the ith param-

eter (see Eq. 18) of the local model identi�ed with the �rst k nearest-neighbors

of the jth query point.

The element in position (k; j) of the matrix I[idM,q] is the index of the kth

nearest-neighbor of the jth query point, i.e. the original position in the matrix

X[n,m] of the kth neighbor of the jth query point.
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6.3 Local Quadratic Models

For each query, the function quaLL.c identi�es and validates using a growing

number of nearest-neighbors, a number of di�erent local polynomial approxima-

tors of degree 2 (see Eq. 7, eq:RecursivePress, and 9). Among these models, the

best one is selected by Eq. 12.

The function can be compiled from the Matlab command line as follows:

>> mex -O quaLL.c

This creates in the current directory the �le quaLL.ext where the extension ext

assumes di�erent forms according to the platform. From now on, if the current

directory is in the Matlab path, the function quaLL can be called no matter what

the current directory is.

The general way to call this function is:

>> [h,s,t,k,H,S,T,I] = quaLL(X,Y,Q,id par);

where the variable involved have the following meaning:

Input:

X[n,m] Examples: Input matrix

Y[n,1] Examples: Output vector

Q[q,m] Queries: Input matrix

id par[2,1] Identi�cation parameters: minimum and

maximum number of neighbors to be

considered: id par=[idm;idM]

The ith row of the matrix X[n,m] is the ith input example xi, and the ith element

of the vector Y[n,1] is the corresponding output yi. Similarly, each row of the

matrix Q[q,m] describes a query point.

The 4th input id par[2,1] de�nes the range K(2) = fidm; : : : ; idM g from

which the best number of neighbors is selected (see Eq. 12).

The function accepts also a 5th input: a scalar LAMBDA[1,1] which is a regu-

larization parameter. The default value is LAMBDA = 1E6. This parameter is used

to de�ne the diagonal matrix ~P = �I, used to initialize the recursive algorithm

described in Eq. 7.

The function accepts also a 6th input: a vector W[m,1] of weights that can

be used to modify the relative contribution of the d dimensions in the distance

function.

The nearest-neighbors of each query point are obtained through an exhaustive

search in the <m

1 metric space (Manhattan distance):

D(xi;xq) =

P
m

j=1W(j) jxi(j) � xq(j)jP
m

j=1W(j)

; (19)
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where W(j), xi(j), and xq(j) are the j
th components of the vectors W[m,1], xi, and

xq respectively; and where W(j) = 1, 8j, if the vector W[m,1] is not given.

Output:

h[q,1] Prediction with the selected number of

neighbors for each query

s[q,1] Leave-one-out error of the prediction

obtained with the selected number of

neighbors for each query

t[p,q] Selected model for each query:

p=(m+1)*(m+2)/2

k[q,1] Selected number of neighbors for each

query

H[idM,q] All the predictions obtained for each

query using a number of neighbors in the

range between 1 and idM (see id par)

S[idM,q] Leave-one-out error of all the predictions

obtained for each query in H[idM,q]

T[p,idM,q] All the models considered for each query

I[idM,q] Index of the idM-nearest-neighbors of

each query point

The jth element of the vector h[q,1] is the prediction relative to the jth query,

obtained with the selected number of nearest-neighbors.

The jth column of the matrix t[p,q] is a vector that contains the parameters

of the model, obtained with the selected number of nearest-neighbors, used to

answer to the jth query. Each column is then:

ja0; a1; a2; : : : ; a11; a12; a13; : : : ; a22; a23; a24; : : : ; a33; a34; a35; : : : j
0 (20)

where a0 is the constant term of the model, ai is the parameter associated with

the ith input variable x(i), aii is the parameter of the quadratic term x2(i), and ail

is the parameter of the cross term x(i)x(l). Remark: A translation of the axes

is considered which centers all the local models in the respective query point.

The jth element of the vector s[q,1] is the leave-one-out mean square error

of prediction relative to the j
th query, obtained with the selected number of

nearest-neighbors.

The jth element of the vector k[q,1] is the number of neighbors which has

been selected in cross validation in order to answer to the jth query.
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The element in position (k; j) of the matrix H[idM,q] is the prediction of the

output to the jth query, yielded by the approximator identi�ed with the �rst k

nearest-neighbors of the jth query itself.

The element in position (k; j) of the matrix S[idM,q] is the leave-one-out

mean square error of the approximator identi�ed with the �rst k nearest-neighbors

of the jth query point.

The element in position (i; k; j) of the matrix T[m+1,idM,q] is the ith param-

eter (see Eq. 20) of the local model identi�ed with the �rst k nearest-neighbors

of the jth query point.

The element in position (k; j) of the matrix I[idM,q] is the index of the kth

nearest-neighbor of the jth query point, i.e. the original position in the matrix

X[n,m] of the kth neighbor of the jth query point.
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6.4 Local Combination of Models

For each query, the function clqLL.c identi�es and validates using a growing

number of nearest-neighbors, a number of di�erent local polynomial approxima-

tors of degree 0, 1, and 2 (see Eq. 10, 11, 7, 8, and 9). According to the value of

some input variables, the function selects the best one as in Eq. 14, or combines

a number of best models as in Eq. 15

The function can be compiled from the Matlab command line as follows:

>> mex -O clqLL.c

This creates in the current directory the �le clqLL.ext where the extension ext

assumes di�erent forms according to the platform. From now on, if the current

directory is in the Matlab path, the function clqLL can be called no matter what

the current directory is.

The general way to call this function is:

>> [h,t] = clqLL(X,Y,Q,id par);

where the variable involved have the following meaning:

Input:

X[n,m] Examples: Input matrix

Y[n,1] Examples: Output vector

Q[q,m] Queries: Input matrix

id par[ , ] Identi�cation parameters: details on di-

mensions follow

Optional Input:

cmb par[ , ] Combination parameters.

Default: cmb par = 1. Details on di-

mensions follow

LAMBDA[1,1] Initialization of the diagonal elements

of the local variance/covariance matrix.

Default: LAMBDA = 1E6

W[1,m] Weights used to evaluate the distances.

Default: W = ones(1,m)

The ith row of the matrix X[n,m] is the ith input example xi, and the ith element

of the vector Y[n,1] is the corresponding output yi. Similarly, each row of the

matrix Q[q,m] describes a query point.

The 4th input id par[ , ] de�nes the range in which the number of neighbors

is searched. The identi�cation parameter can assume the following forms:
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1. id par[3,3] id par =

���������
idm0 idM0 valM0

idm1 idM1 valM1

idm2 idM2 valM2

���������
where [idmd,idMd] is the range K(d) in which the best number of neighbors
is searched when identifying the local model of degree d. The scalar valMd

de�nes the maximum number of neighbors on which the local model of

degree d is validated:

mse
cv

d
(k) =

1

md(k)

md(k)X
j=1

e
cv

d;j
(k):

where m(k) = min(k; valMd).

2. id par[3,2] id par =

���������
idm0 idM0

idm1 idM1

idm2 idM2

���������
where [idmd,idMd] have the same meaning as in point 1, and valMd as-

sumes the default value of idMd for all the values of d: for every local

model considered, all the neighbors used in identi�cation are used also in

validation.

3. id par[3,1] id par =

���������
c0

c1

c2

���������
Here idmd and idMd are obtained according to the following formulas:

idmd = floor(3 * pd * cd)

idMd = ceil(5 * pd * cd)

where pd is the number of parameter of the model of degree d. Recom-

mended choice: cd = 1. The validation parameters get the default value as

in point 2.

The function accepts also a 5th input, cmb par[ , ] that determines the behavior

of the function for what concerns the combination/selection of the local models.

If cmb par is not given, the best model is selected among those identi�ed as

speci�ed by id par. In this case, the model combination reduces to a simple

model selection. The default value for cmb par is 1 as it will be clear from what

follows. If given, cmb par can assume the following to forms:
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1. cmb par[3,1] cmb par =

���������
cmb0

cmb1

cmb2

���������
where cmbd is the number of models of degree d that will be included in the

local combination. Each local model will be therefore a combination of the

best cmb0 models of degree 0, the best cmb1 models of degree 1, and the

best cmb2 models of degree 1, all identi�ed as speci�ed by id par.

2. cmb par[1,1] cmb par =
��� cmb ���

where cmb is the number of models that will be combined, disregarding any

constraint on the degree of the models that will be considered. Each local

model will be therefore a combination of the best cmb models, identi�ed as

speci�ed by id par.

The function accepts also a 6th input: a scalar LAMBDA[1,1] which is a regular-

ization parameter. The default value is LAMBDA = 1E6. This parameter is used

to de�ne the diagonal matrix ~P = �I, used to initialize the recursive algorithm

described in Eq. 7.

The function accepts also a 7th input: a vector W[m,1] of weights that can

be used to modify the relative contribution of the d dimensions in the distance

function.

The nearest-neighbors of each query point are obtained through an exhaustive

search in the <m

1 metric space (Manhattan distance):

D(xi;xq) =

P
m

j=1W(j) jxi(j) � xq(j)jP
m

j=1W(j)

; (21)

where W(j), xi(j), and xq(j) are the j
th components of the vectors W[m,1], xi, and

xq respectively; and where W(j) = 1, 8j, if the vector W[m,1] is not given.

Output:

h[q,1] Prediction with the selected number of

neighbors for each query

t[ ,q] Selected model for each query: details on

dimensions follow

The jth element of the vector h[q,1] is the prediction relative to the jth query.

The jth column of the matrix t[p,q] is a vector that contains the parameters

of the model used to answer to the jth query. If according to id par and cmb par

only constant models are considered t[p,q] reduces to a vector t[1,q] in which
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each \column" is the single parameter of a constant model. If at least one model

of degree 1 and no model of degree 2 are considered, each column of t[p,q] is a

vector that contains p=m+1 parameters: ja0; a1; a2; : : : j where a0 is the constant
term of the model and ai is the parameter associated with the ith input variable

x(i). If at least one model of degree 2 is considered, each column of t[p,q], where

p=(m+1)*(m+2)/2, is a vector that contains the parameters of a local model with

the following convention:

ja0; a1; a2; : : : ; a11; a12; a13; : : : ; a22; a23; a24; : : : ; a33; a34; a35; : : : j
0

where a0 is the constant term of the model, ai is the parameter associated with

the ith input variable x(i), aii is the parameter of the quadratic term x2(i), and ail

is the parameter of the cross term x(i)x(l). Remark: A translation of the axes

is considered which centers all the local models in the respective query point.
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Figure 1: Distribution of the examples

in the input space.
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Figure 2: The target is a set of 322 =

1024 query points distributed on a grid.

7 An Example

In this section we will propose an example of use of the Lazy Learning Toolbox.

We suppose that the four functions have been compiled and that they are in the

Matlab path.

Let us consider the problem of learning the input-output relation:

y = 4 sin
�
� x(1)

�
+ 2 cos

�
� x(2)

�
+N(0; 0:1);

where the variables x(1) and x(2) range over the domain [�1; 1] and N(0; 0:1) is

a Gaussian random noise with mean equal to 0, and standard deviation equal to

0:1.

Data generation

Let us assume that only a training set of n = 200 examples is available:

>> n=200;

>> m=2;

>> X=1-2*rand(n,m);

>> plot(X(:,1),X(:,2),'.');

>> Y=4*sin(pi*X(:,1))+2*cos(pi*X(:,2))+.1*randn(n,1);

The distribution of the examples if shown in Fig. 1.

Let us assume also that we want to predict the output in a set of 322 = 1024

query points equally spaced and distributed on a grid:
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>> qq=linspace(-1,1,32);

>> [Q1,Q2]=meshgrid(qq);

>> Q=[Q1(:),Q2(:)];

>> w=4*sin(pi*Q(:,1))+2*cos(pi*Q(:,2))+.1*randn(1024,1);

>> W=reshape(w,32,32);

>> mesh(Q1,Q2,W);

Here w[1024,1] is the \real" value of the output associated with the query points

(see Fig. 2). Of course it will not be use to perform the prediction and will be

used only in a very �nal phase to quantitative compare the results.

In what follows we show how to extract a prediction, and as far as the functions

conLL, linLL , and quaLL are concerned, how to extract the number of nearest-

neighbors used to perform each prediction. Since functions allocate memory and

perform additional computations according to the number of output parameter

speci�ed at the Matlab prompt, we suggest not to ask for the full set of outputs

if they are not needed. Of course, since Matlab recognizes the output matrices

based on their position, if the i
th is needed also the j

th , with j � i must be

speci�ed.

The following examples illustrate the main features of the Lazy Toolbox but

are not exhaustive. Please refer to the previous section for a complete description

of the functions. The results proposed are not to be considered as the best that

can be obtained with the Toolbox on this problem, they are simply examples : : :

7.1 Local Constant Models

Using local constant models, the prediction of the values assumed on the grid can

be obtained as follows:

>> id par=[4;15];

>> tic;h=conLL(X,Y,Q,id par);toc

elapsed time =

0.0497

>> rmse(h,w)

ans =

0.7022

>> H=reshape(h,32,32);

>> mesh(Q1,Q2,H);
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Figure 3: Prediction obtained with lo-

cal constant models. RMSE = 0:7022.
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Figure 4: Number of nearest-neighbors

used to perform each prediction.

For each of the 1024 query points, with this experiment the function automatically

selects in the range [4 : : : 15] the best number of neighbors to be used to �t a

local constant model (Fig. 3). The entire experiment, i.e. the prediction for all

the query points, took 0:0497s on a Pentium 400MHz. The achieved root mean

square error is 0:7022.

7.2 Local Linear Models

Using local linear models, the prediction of the values assumed on the grid can

be obtained as follows:

>> id par=[4;15];

>> tic;h=linLL(X,Y,Q,id par);toc

elapsed time =

0.1444

>> rmse(h,w)

ans =

0.3255

>> H=reshape(h,32,32);

>> mesh(Q1,Q2,H);

For each of the 1024 query points, with this experiment the function automatically

selects in the range [4 : : : 15] the best number of neighbors to be used to �t a local

linear model (Fig. 5). The entire experiment, i.e. the prediction for all the query
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Figure 5: Prediction obtained with lo-

cal linear models. RMSE = 0:3255.
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Figure 6: Number of nearest-neighbors

used to perform each prediction.

points, took 0:1444s on a Pentium 400MHz. The achieved root mean square error

is 0:3255.

7.3 Local Quadratic Models

Using local linear models, the prediction of the values assumed on the grid can

be obtained as follows:

>> id par=[4;15];

>> tic;h=quaLL(X,Y,Q,id par);toc

elapsed time =

0.3298

>> rmse(h,w)

ans =

0.2176

>> H=reshape(h,32,32);

>> mesh(Q1,Q2,H);

For each of the 1024 query points, with this experiment the function automatically

selects in the range [4 : : : 15] the best number of neighbors to be used to �t a local

quadratic model (Fig. 7). The entire experiment, i.e. the prediction for all the

query points, took 0:3298s on a Pentium 400MHz. The achieved root mean square

error is 0:2176.
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Figure 7: Prediction obtained with

local quadratic models. RMSE =

0:2176.
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Figure 8: Number of nearest-neighbors

used to perform each prediction.

7.4 Local Combination of Models

The function clqLL is more complex and more powerful than the previous three

functions. Indeed, for particular values of the parameters, it is possible to obtain

exactly the same predictions yielded by conLL, linLL, and quaLL. This three

function, on the other hand, return more information, e.g. all the local models

considered, the mean square error, etc. and thus are not completely superseded

by clqLL. The same results obtained in the previous experiments can be obtained

as follows:

>> id par=[[4,15];[4,15];[4,15]];

>> cmb par=[1;0;0];

>> h0=clqLL(X,Y,Q,id par,cmb par);

>> cmb par=[0;1;0];

>> h1=clqLL(X,Y,Q,id par,cmb par);

>> cmb par=[0;0;1];

>> h2=clqLL(X,Y,Q,id par,cmb par);

Where h0 is the vector of prediction obtained by selecting locally the best constant

approximator, h1 by selecting the best linear approximator, and h2 by selecting

the best quadratic one.

The selection of the best polynomial degree, together with the selection of the

best number of neighbors for each query point can be obtained as follows:
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Figure 9: Prediction obtained with lo-

cal selection of the degree of the poly-

nomial and of the number of neighbors.

RMSE = 0:2148.
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Figure 10: Prediction obtained with

local combination of 5 models of dif-

ferent polynomial degree and identi�ed

with a di�erent number of neighbors.

RMSE = 0:1883.

>> id par=[[4,15];[4,15];[4,15]];

>> tic;h=clqLL(X,Y,Q,id par);toc

elapsed time =

0.4839

>> rmse(h,w)

ans =

0.2148

>> H=reshape(h,32,32);

>> mesh(Q1,Q2,H);

For each of the 1024 query points, with this experiment the function automatically

selects in the range [4 : : : 15] the best number of neighbors to be used to �t the

local models of di�erent polynomial degree, and then automatically selects the

degree which is expected to perform better (Fig. 9). The entire experiment, i.e.

the prediction for all the query points, took 0:4839s on a Pentium 400MHz. The

achieved root mean square error is 0:2148.

An even better result can be obtained by combining locally a number of local

model. In the following example we combine for each query 5 local models leaving

unchanged the ranges in which the best number of nearest-neighbors are searched

for.
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>> id par=[[4,15];[4,15];[4,15]];

>> cmb par=5;;

>> tic;h=clqLL(X,Y,Q,id par,cmb par);toc

elapsed time =

0.4874

>> rmse(h,w)

ans =

0.1883

>> H=reshape(h,32,32);

>> mesh(Q1,Q2,H);

For each of the 1024 query points, with this experiment the function automati-

cally selects and combines the best 5 models (according to a local leave-one-out

validation) of degree from zero to two, and identi�ed with a number of neighbors

in the range [4 : : : 15] (Fig. 10). The entire experiment, i.e. the prediction for all

the query points, took 0:4874s on a Pentium 400MHz. The achieved root mean

square error is 0:1883.

In order to obtain a higher 
exibility, the analyst can specify for each polyno-

mial degree a di�erent range in which to search for the best number of neighbors:

>> id par=[[3,10];[9,15];[12,25]];

Furthermore, a default option is available that allows the analyst to consider a

range of nearest-neighbors whose bounds are function of the number of parame-

ters of the local approximator. For example, with the following:

>> id par=[1;1;.8];

the best number of neighbors is searched in a range between 3 and 5 times

the number of parameter for models of degree zero and one, and between 0:8� 3

and 0:8� 5 for the model of degree two. By putting one of the three components

of the vector id par to zero, one obtains that the models of the corresponding

degree are not considered. For example, with:

>> id par=[1;1;0];

for the problem at hand whose input is two dimensional, the function identi�es

only local model of degree zero and one and looks for the best number of neighbors

in the range [3 : : : 5] for the former, and in the range [9 : : : 15] for the latter. The

same con�guration can be explicitly speci�ed with:
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>> id par=[[3,5];[9,15];[0,0]];

As far as the combination parameter is concerned, two options are available.

With the following:

>> cmb par=10;

the analyst obtains that for each query point the best 10 local models, among

those considered according to id par, are combined without any constraint on

their degree. The second option consists in explicitly specifying the number of

models required for each degree. For example:

>> cmb par=[2;5;3];

requires that for each query the best 2 constant models are combined with the

best 5 linear models and with the best 3 quadratic models.
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