
FAMIMO Common Software
Documentation (α2.0)

Antoine Duchâteau, Edy Bertolissi

IRIDIA, Université Libre de Bruxelles
50, av. Franklin Roosevelt

1050 Brussels, Belgium
Tel: +32 2 650 27 29, Fax: 32 2 650 27 15

email: bersini@ulb.ac.be

Abstract

Fuzzy systems are becoming more and more accepted, both in industry and in the academic
control community, as an emerging tool for the facilitated design of complex non-linear feed-
back control systems. The scope of the FAMIMO project is to enrich the present knowledge
in designing fuzzy systems for the reliable control of high-dimensional complex processes. One
of the major goals of project has been set in making available analytic and computerised tools
for assessing the stability of both the control and learning algorithms integrated in the future
industrial exploitation of these methods.

This document provides the manual of the FAMIMO toolbox, a collection of tools, accessible
through a user interface or the MatlabTMcommand line, for the development of control systems
for a large diversity of MIMO processes.

Abstract

Fuzzy systems are becoming more and more accepted, both in industry and in the academic
control community, as an emerging tool for the facilitated design of complex non-linear feed-
back control systems. The scope of the FAMIMO project is to enrich the present knowledge
in designing fuzzy systems for the reliable control of high-dimensional complex processes. One
of the major goals of project has been set in making available analytic and computerised tools
for assessing the stability of both the control and learning algorithms integrated in the future
industrial exploitation of these methods.

This document provides the manual of the FAMIMO toolbox, a collection of tools, accessible
through a user interface or the MatlabTMcommand line, for the development of control systems
for a large diversity of MIMO processes.

Chapter 1

Introduction

1.1 General information

This documentation is divided in three parts. The learning guide where the use of the tools is
illustrated through several examples (right now, only the commented examples are available in
the tutorial directory). The reference guide that lists the complete set of API. The user interface
reference that explains the use of the graphical user interface (GUI).

It is recommended to step through the examples in order to have an overview of the philosophy
and the possibilities of the toolbox. The reference guide is a concatenation of the MatlabTMhelp
available for each function. This reference is also available in html format.

The following features are still to be implemented:

• the control functionalities and the integration of the FAST toolbox.

• the Mixture of Experts model (trained by the em algorithm).

• A fast (we hope ten times faster) simulation of the model.

• A faster lazy algorithm.

• A better implementation of the parameters settings.

1.2 Installation

Before to use the tools or the GUI, the software needs to be installed. Inside MatlabTM, move
to the directory identification and type the ”setup” command. The paths needed by the
program will be set up automatically and the mex files will be built if the binaries are not pro-
vided. The mex files are already compiled for the linux, the macos and the solaris environment.

1.3 Bug report

This software is sort of alpha quality. We would be very happy to hear about bugs you noticed.
Please send a mail with the bug description (or better, a mfile that makes the bug appear) to
bugs@iridia.ulb.ac.be.

1.4 Help needed

Do not hesitate to contact Antoine Duchateau (aduchate@ulb.ac.be) or Edy Bertolissi (eberto@iridia.ulb.ac.be)
if you need any for the understanding or the use of the toolbox.

2

Chapter 2

Learning Guide

The main scope behind NLMIMO is the integration of the software produced by the partners
taking part in the FAMIMO project (ESPRIT LTR Project 21911) in a unique toolbox. In order
to achieve this it has been necessary to design an extremely flexible system that can accommo-
date the needs of the different laboratories collaborating in the project. For this reason the
NLMIMO toolbox has been designed using an object oriented approach, which allows modular-
ity, flexibility and ease of extension. This has been possible thanks to the new features present
in the MatlabTM5.0 which allows the development of an object oriented software.

The NLMIMO toolbox is built around three main classes. The system class, which defines all
the attributes which characterize a system, the dataset class, which allows the storage and
the processing of all the data, and the mapping class, which defines the the modeling of the
process. As depicted in figure ?? the system class is the main one of the toolbox, and the other
ones are used to describe some of the features of the system. In this way the data and the
parameterization of the model are separate from the description of the system, and therefore
can be easily modified or updated without the need of altering the structure of the system class.
Each class has methods for accessing, setting and displaying its attributes, and checking their
integrity and consistency.

2.1 Building things

Once the general philosophy and the structure of the NLMIMO toolbox has been understood,
it is time to put your hands on the keyboard and use this toolbox for the definition and the
analysis of dynamic or static systems.

The nlmimo toolbox supports two alternative system representations: internal, and external
representation. The MatlabTMobject oriented approach provides an ideal way to describe the
rich set of information which characterize these representations.
We will start with the description of the external representation. There are several different
alternatives constructors which can be used to build an external object. The common one is to
define the a new object using the following syntax:

m=external(’external object’,2,3)

this creates a new object belonging to the class external whose name is “external object”, with
2 inputs and 3 outputs. MatlabTMdisplays the following information on the screen:

m =
A external system with the following attributes

name: ’external object’

3

4 CHAPTER 2. LEARNING GUIDE

n_in: 2
n_out: 3

dynamics: []
data: []

T: -1
mapping: {}
links: []

limits: [2x5 double]
userData: []

opt: []
date: [1999 7 26 8 53 44.8545]

It is possible to access the fields of the object using two different approaches; using the “.” (dot)
operator (object name.field), or using the get method:

get(object_name,’field’)

The first approach is useful when analyzing objects at the MatlabTMprompt, but is discouraged
in programs since it is against the object oriented programming paradigm used in the toolbox.
If not differently specified all the fields of and object can be set using the set method, which
allows to set the values of multiple attributes. This can be done in the following way:

set(object_name,’field’, value)
set(object_name,’field_1’, value_1,’field_2’,value_2,...)

The name field of an external object contains its name, and n in and n out store the its number
of inputs and outputs.

The dynamics field provides the dynamics description of the system. It is a structure including
three subfields, nu, ny and nd, which define the regressors and therefore the dynamical behaviour
of the system. ny is a n out � n out square matrix which contains the relationships of each
output (each row) with all the other outputs. Each entry ij indicates the number of past values
associated to the output j used in the regressor of the output i. nu is a n out � n in matrix
defining the relationships between the outputs and each input. Each entry ij indicates the
number of past values associated to the input j used in the regressor of the output i. Finally
nd is a n out � n in matrix defining the delay of the inputs respect to the outputs. Each entry
ij indicates the delay of the input j used in the regressor of the output i. For example the
following dynamical description of a 2 inputs 3 outputs system:

y1(t) = F (y1(t− 1), y1(t− 2), y2(t− 1), u1(t), u1(t− 1), u1(t− 2), u2(t))
y2(t) = F (y1(t− 1), y2(t− 1), y3(t− 1), u1(t), u1(t− 1), u2(t− 2))
y3(t) = F (y1(t− 1), y2(t− 1), y2(t− 2), y3(t− 1), u2(t− 2), u2(t− 3)

is translated in the following set of matrices:

ny =

2 1 0
1 1 1
1 2 1

 end nu =

3 1
2 1
0 2

 nd =

0 0
0 2
0 2

The method add dynamics allows to add the dynamical description to the object. It is possible
to use one of the two following syntaxes:

m=add_dynamics(m,dyn)

2.1. BUILDING THINGS 5

which attaches to the object m the dynamic description of the system present in the structure
dyn which must include the fields ’nu’, ’ny’ and ’nd’, defining the appropriate matrixes of the
inputs, outputs and delays of the system;

m=add_dynamics(m,ny,nu,nd)

which attaches to the the object m the dynamic description of the system as defined in the arrays
ny, nu, and nd.

The data field stores an object of type “dataset”, which contains all the input-output data of
the system. Once the data has been stored in a “dataset” object and all the data preprocessing
has been done it is possible to associate it to the external system using the following syntax:

m=add_data(m,data,t)

which associates the data object to the field ’data’ of the model m. The optional variable t
specifies the sampling time of the model (default continuous = 0).

T represents the sampling time of the system; -1 indicates that this quantity is undefined, 0 that
the system is a continuous one, a number greater than zero indicates the sampling time of the
discrete time system. This field can be defined using the set method.

The field mapping is a cell array which contains the input-output mappings of the system. Each
of the elements present in this class belongs from a subclass of the “mapping” class. New
mappings can be added to this list using the following syntax:

m=add_mapping(m,mapp)

which appends the mapping defined in mapp to the list of the mappings of the object. The clear
the list it is possible to use the function:

m=add_mapping(m)

Once the list of the mappings have been defined it is necessary to associate each output to a
mapping. This relation is stored in the links field, which is an array of size n out � 2. The first
column defines the number of the mapping, and the second one the number of the output to
which the mapping is associated. Of course there could be mapping which are not associated
to any output. This is especially the case during the modeling stage when different models are
tested, and only some of them are active at each moment.

The limits field stores the superior and inferior limits of the input and outputs of the system.
It is a array of size 2 � (n in + n out). The top row stores the inferior limit and bottom one the
superior limits of the inputs and the outputs of the system. The default values are -Inf +Inf
for all the inputs and the outputs.

The date field reports the creation date the the system. The opt and userData fields are used
to store optional information or used defined data, and can be useful especially during the de-
velopment of user defined functions.

Once a new external object has been created it is possible to start to fill the different fields
using the methods described in the previous section. Usually the first fields to be defined are
the dynamics and data fields. Then as soon as the mappings are defined it is possible to add
them to the list of the mapping of the system using the add mapping method. The method
get allows to retrieve all the mapping field stored in an external object, however the following
syntaxes allow to see the contents of each mapping directly. For example:

6 CHAPTER 2. LEARNING GUIDE

m.mapping{1}

or even more shortly:

m{1}

allow to see the contents of the first mapping of the mapping list associated to the object m.

Before gpomg on it is essential to define the links field in order to associate each output to a
mapping.
There are a series of method which have been defined for the processing of the external objects.
First of all there is the identify method. It most general syntax follows:

m=identify(m,j,options)

which performs an identification of the output j of the system passing to the identification
procedure the parameters contained in the structure options. This method is a wrapper since
it calls the identification procedure associated with the mapping connected with the output j
passing to this one the option structure and the data contained in the data field to perform
the identification procedure. The contents of option must be consistent with the identification
procedure associated with the particular mapping.

The quality of the result of the identification procedure can be assessed with methods for calcu-
lating the mean square error, error, and the simulation error simulation error of the model
respect the to the reference set of values given as output data or a validation set given as input
of the method.

Another method defined by the class is regress which extracts the regressors from the data
whose sintax follows:

[r_in,r_out]=regress(m,j)

This function uses the dynamical system representation stored in the dynamics field to extract
the regressors form the input-output data stored in the data field. The function returns the
input regressors r in in a cell array. Each element of the cell array is a regressor associated with
an output. Each regressor is an array of size size regressor�numexaples, where size regressor
depends from the structure of the regressor defined in the dynamical description of the system,
and num exaples is the number of examples given in the input-output data set. r in is a cell
array returning the correspondent output of each regressor taken from the output data set. Each
entry in the cell array is a vector of size 1 � num examples.

The method eval calculates the output for the output j of a system given the regressor using
the syntax:

out=eval(m,regressor,j)

Other two method are used to calculate the derivatives of the system respect to the inputs
(jacob inputs) and the parameters (jacob parameters). All these methods are wrappers since
they call the equivalent methods defined in the single mappings defined inside the object.

The method simulate performs a simulation of the model using the input data and feeding
back the results of the simulation to calculate at each step the regressors.

The class defines other methods for normalize a mapping in order to make fit its limits to the
interval [0,1] (if the limits are finite), denormalise it, and to check the consistency of all the
fields defined in an external object.
The internal class is quite similar to the external one, but it defines some other fields and
methods. When a new internal object is created with the command

2.2. THE MAPPING CLASS AND ITS SUBCLASSES 7

m=inetrnal(’internal object’,1,2,3)

this creates a new object belonging to the class internal whose name is “internal object”, with
1 input, 2 outputs and 3 internal states. MatlabTMdisplays the following on the screen:

m=
A internal system with the following attributes

name: ’internal object’
n_in: 1

n_out: 2
n_state: 3
state: [0 0 0]
data: []

T: -1
mapping: {1x1 cell }
links: [2x2 double]
limits: [2x3 double]

userData: []
statemapping: {1x1 cell }
statelinks: [3x2 double]

statelimits: [2x3 double]
opt: []

date: [1999 7 26 13 51 6.6021]

As it is possible to see the main difference between an internal and an external object is the
absence of the dynamic field and the presence of all a series of field associated with the internal
representation of the state of the system. The object is already initialized with linear mappings
for describing the evolution of the internal state and its outputs. The field n states defines the
number of the internal states of the system, and the field state their initial values. The fields
statemapping, statelinks and statelimits are similar to the mapping, links and limits
fields but they refer to the internal state of the system. it is possible to add new mappings for
the state using the add statemapping method in a way identical to the add mapping method.
Almost all the methods defined in the external class are defined in the internal one as well. In
addition the following methods are defined: eval state for calculating the internal state of the
system given a regressor, jacob cloop for calculating the jacobian with respect to the state for
a closed loop.

2.2 The mapping class and its subclasses

The mapping class and its subclasses allows great power and flexibility to the nlmimo toolbox.
These classes allow the to define the modeling of a process using the approach which best suits
the data and the the ability of the programmer. Different approaches can be used and the results
of each mapping can be evaluated and compared to choose the best possible system description.
Now in turn a description of all the mappings which have been defined so far in the toolbox will
be given.

Besides providing a common framework for every linear and non linear mappings supported
inside the system class and its subclasses. The mapping architecture supply the user with a
complete set of stand alone classes. A dynamical model should always be defined using the
internal or external to take profit of the dynamical representation facilities provided by these
classes. A static model can be defined using the external class if integration with simulink,
models combination or data set embedding are whished features. It can also be defined using

8 CHAPTER 2. LEARNING GUIDE

one of the mapping subclasses when such features are not necessary which allow user to choose
a smaller data structure while still having access to the core functions of the toolbox.

In the following pages, we present how to use the mapping class in stand alone mode. Their
use while embedded inside a system object is obvious if one keeps into mind that many system
methods like eval, identify, ... are nothing more than wrapper/dispatcher which pass their
arguments to the called mapping subclasses methods.

2.2.1 The linear class

The linear mapping provides a simple linear relationship between inputs and outputs. To create
a new linear object it is possible to use the following instruction:

l=linear(’linear object’,2,3)

which creates a new linear object called “linear object” with 2 inputs and 3 outputs. MatlabTMdisplays
the following information on the screen:

l =

A linear object with the following attributes

name: ’linear object’
n_in: 2
n_out: 3

limits: [2x5 double]
userData: []

opt: []
date: [1999 7 26 14 51 31.6432]

optimparams: []
linears: [3x3 double]

the name field stores the name of the object, n in and n out the number of input and output of
the mapping. It is possible to notice that there is no definition of time in all the mapping objects.
This is beacuse the mapping objects are better understood as input-output functions which re-
ceive a certain number of inputs and return a defined number of outputs. The limits field stores
the limits of the inputs and the outputs of the mapping. It is a array of size 2 � (n in + nout).
The top row stores the inferior limit and bottom one the superior of the inputs and the outputs
of the system. The default values are -Inf +Inf for all the inputs and the outputs. The most
important field is the linears one which stores the linear relationships between the input and
the outputs of the system. The date field stores the creation time of the object. The userData
and opt field could be used by the user during the developemnt of programs for storing infor-
mation. The optimparams field is used to specify which subset of the parameters has to be
optimised when the identify method is called. Similarly to the case of the subclasses of the
system class, all the fields can be set using the set method, and retrived using the ’dot’ or the
get method.

The linear class defines a series of methods for performing the several actions on its objects.

The method identify whose syntax follows:

m = identify(m,in,out)

2.2. THE MAPPING CLASS AND ITS SUBCLASSES 9

perform a least mean square fit of the input-output data contained in the in and out arrays.
The first one must have a size of num examples � n in while the second one must be equal to
num examples � n out. The results of the least mean square fit are stored in the linears field.

The class provides a method for evaluating the mapping given an input, eval, method for nor-
malising and denormalising the mapping (if the limits are finite). The methods jacob inputs
and jacob params are used to calculate the derivatives of the mapping respect to the inputs
and the parameters. The method check is provided to check the consistency of all the fields
defined in an external object.

2.2.2 The lazy class

The class lazy allows to describe dynamical systems using a ’lazy’ representation, which is a kind
of k-nearest neigbour. It works in a simple way. The input-output data is stored in a database.
When a prediction of the putput is needed a local model is fitted through the closest points of
the query contained in the database. In order to create a new lazy object it is possible to use
the following instruction:

l=lazy(’lazy object’,2,3)

which creates a new lazy object called “lazy object” with 2 inputs and 3 outputs. MatlabTMdisplays
the following information on the screen:

A lazy object with the following attributes

name: ’lazy object’
n_in: 2
n_out: 3

limits: [2x5 double]
userData: []

opt: []
date: [1999 7 27 8 7 13.6540]

optimparams: []
id_par: []

cmb_par: 1
examples_x: []
examples_y: []

the name field stores the name of the object, n in and n out the number of inputs and outputs of
the mapping. This class as well has the limits, userData, opt, optimparams, and date fields
which have the same meaning of the ones defined in the linear class. The fileds examples x and
examples y, contain the full input-output database, which is used by the algorithm to perform
the local fitting when needed. The elements which describe how the lazy model will be built are
defined in the id par and cmb par fields.

When the identify method is called:

m = identify(m,in_data,out_data,options)

no real identification is performed, since the models are built on query-by-query basis, but the
examples x field is inizialized with the data contained in in data and the examples y field with
the one contained in the out data. The dimension of in data must be num examples � n in,
the one of out data num examples � n out. The options argument is a structure which may
be used to specify the identification method and options. It can define two fields; id par for
the identification parameters and cmb par for the model combination parameters.The first one

10 CHAPTER 2. LEARNING GUIDE

defines the range in which the number of neighbors is searched. The identification parameter
can assume the following forms:

1. id par[3,3] id par =

∣∣∣∣∣∣∣

idm0 idM0 valM0
idm1 idM1 valM1
idm2 idM2 valM2

∣∣∣∣∣∣∣
where [idmd,idMd] is the range K(d) in which the best number of neighbors is searched
when identifying the local model of degree d. The scalar valMd defines the maximum
number of neighbors on which the local model of degree d is validated:

msecv
d (k) =

1
md(k)

md(k)∑
j=1

ecv
d,j(k). (2.1)

where m(k) = min(k, valMd).

2. id par[3,2] id par =

∣∣∣∣∣∣∣

idm0 idM0
idm1 idM1
idm2 idM2

∣∣∣∣∣∣∣
where [idmd,idMd] have the same meaning as in point 1, and valMd assumes the default
value of idMd for all the values of d: for every local model considered, all the neighbors
used in identification are used also in validation.

3. id par[3,1] id par =

∣∣∣∣∣∣∣

c0
c1
c2

∣∣∣∣∣∣∣
Here idmd and idMd are obtained according to the following formulas:

idmd = floor(3 * pd * cd)
idMd = ceil(5 * pd * cd)

where pd is the number of parameter of the model of degree d. Recommended choice: cd
= 1. The validation parameters get the default value as in point 2.

cmb par determines the behavior of the function for what concerns the combination/selection of
the local models. If cmb par is not given, the best model is selected among those identified as
specified by id par. In this case, the model combination reduces to a simple model selection.
The default value for cmb par is 1 as it will be clear from what follows. If given, cmb par can
assume the following to forms:

1. cmb par[3,1] cmb par =

∣∣∣∣∣∣∣

cmb0
cmb1
cmb2

∣∣∣∣∣∣∣
where cmbd is the number of models of degree d that will be included in the local combina-
tion. Each local model will be therefore a combination of the best cmb0 models of degree
0, the best cmb1 models of degree 1, and the best cmb2 models of degree 2, all identified
as specified by id par.

2. cmb par[1,1] cmb par =
∣∣∣ cmb

∣∣∣
where cmb is the number of models that will be combined, disregarding any constraint on
the degree of the models that will be considered. Each local model will be therefore a
combination of the best cmb models, identified as specified by id par.

2.2. THE MAPPING CLASS AND ITS SUBCLASSES 11

It is important to notice that less computational expensive models are the constant ones, fol-
lowd by the linear ones. The quadratic models are particularly heavy and should not be used
for for a number of inputs which is greater than 7-8. The combination of models improves the
performance of the lazy algorithm. For more details about the features of the algorithm see
“The lazy learning toolbox” [?].

The eval method calculates the output of the lazy system for a given input. At each query
point it builds a local model fitting the data close to the query point using the database of
the examples. This function is quite computationally expensive in comparison with the eval
methods defined in other classes such as linear and taksug, since all the database of the examples
must be completely scanned and the model generated at each query.

The method jacob inputs computes the jacobian of the outputs respect to the inputs, while
the method jacob params is only provided for consistency, buy returns an empty array, since it
has no meaning for the lazy mapping.

Methods for normalising and denormalising the mapping (if the limits are finite) are provided.
Finally the the method check checks the consistency of all the fields defined in a lazy object.

2.2.3 The taksug class

The taksug class is used when an input-output relation inside the system is to be represented
with a Takagi Sugeno fuzzy system:

ts = taksug(’Takagi Sugeno Mapping’,2,3)

produces a 2 inputs, 3 outputs TS fuzzy function. The object returned is as follows:

A taksug object with the following attributes

name: ’Takagi Sugeno Mapping’
n_in: 2
n_out: 3

limits: [2x5 double]
userData: []

opt: []
date: [1999 7 27 17 19 19.5549]

optimparams: []
n_rules: 0

model_code: {}
m: 2

centers: []
ivariances: []

rls: []
mfs: {1x2 cell }

linears: []

Once again, the name field stores the name of the object, n in and n out the number of input
and output of the mapping. This class as well has the limits, userData, opt, optimparams,
and date fields which have the same meaning as in the linear class. n rules is the number
of rules of the TS function. It should not be changed by hand, add rules and rem rules take
care of maintaining it coherent with the others attributes of the object. The same remark is
appliable for the dimensions of the other fields specific to taksug.

Let’s add a few rules to the TS system:

12 CHAPTER 2. LEARNING GUIDE

ts = add_rules(ts,5)

ts =

A taksug object with the following attributes

name: ’Takagi Sugeno Mapping’
n_in: 2
n_out: 3

limits: [2x5 double]
userData: []

opt: []
date: [1999 7 27 17 19 19.5549]

optimparams: []
n_rules: 5

model_code: {1x3 cell }
m: 2

centers: [2x5 double]
ivariances: [2x2x5 double]

rls: []
mfs: {1x2 cell }

linears: [3x3x5 double]

If we look inside ts.model code, MatlabTMreturns:

ans =

’productspace’ ’inversedist’ ’linear’

which means that the TS rules are defined in the multidimensional space formed by the product
of the input spaces (productspace), that the degrees of fullfilment of the rules are computed
on the basis of the inverse of the distance (inversedist) and that the consequents of the rules
are linear functions (linear). We can either change this value by writing for example:

set(ts,’model_code’,{’productspace’ ’gaussian’ ’linear’})

or we could have called the add rules with an extra parameter:

ts = add_rules(ts,5,{’productspace’ ’gaussian’ ’linear’})

If we call add rules and the specified rule types don’t match the previously added ones, the
following error message is issued:

??? Error using ==> taksug/add_rules
You cannot add rules of this type to the current model.
Remove first the previous ones

In this case, rem rules has to be used to empty the rules before new types of rules can be added.

The fields centers and ivariances are used to describe rules defined in the cross product space:

R(l) : IF x1, x2, ..., xn IS A(l) THEN y = h(l)(x)

while the fields rls and mfs are used for projected rules:

R(l) : IF x1 IS A
(l)
1 AND . . . AND xn IS A

(l)
n THEN y = h(l)(x).

2.2. THE MAPPING CLASS AND ITS SUBCLASSES 13

centers is a n in � (n rules) matrix containing for each rule, the center cl of the fuzzy set,
antecedent of the rule l. ivariances is a n in � n in � (n rules) matrix Λl containing for each
rule, the quadratic matrix defining the metric of the antecedent of the rule l. linears contains
the parameters of the linear consequent Ll of the rule. The output of the Takagi Sugeno system
is therefore computed as this:

y =
l=n∑

l

e−(x−cl)
T Λl(x−cl) ∗ Ll ∗ x (2.2)

for model code equal to {’productspace’ ’gaussian’ ’linear’} and

y =
l=n∑

l

1

[1 + (x− cl)T Λl(x− cl)]
1

m−1

∗ Ll ∗ x (2.3)

for model code equal to {’productspace’ ’inversedist’ ’linear’}.

mfs is cell array (one cell for each input) whose the cells contain the description of the rukes
along each input dimension. rls defines the rule base. Its size is n rules � (n in).

Let’s take an example of a projected Takagi Sugeno system. This is the MatlabTMsession:

>>ts = taksug(’Takagi Sugeno Mapping’,2,3);
>>ts.limits(:,1:2) =[0 0;1 1];
>>ts = sets_grid(ts, 3, 5, ’trapezoidal’);
>>ts = add_rules(ts, 15, {’projected’ ’rulegrid’ ’linear’})

ts =

A taksug object with the following attributes

name: ’Takagi Sugeno Mapping’
n_in: 2
n_out: 3

limits: [2x5 double]
userData: []

opt: []
date: [1999 7 28 11 9 29.3285]

optimparams: []
n_rules: 15

model_code: { 1x3 cell }
m: 2

centers: []
ivariances: []

rls: [15x2 double]
mfs: { 1x2 cell }

linears: [3x3x15 double]

The taksug object is created using the constructor taksug, limits are specified for the two
inputs. On the basis of these limits, the toolbox is able to populate the inputs with fuzzy sets
using the sets grid method. In this case, 3 sets are put on the first dimension and 5 are put on
the second one. The sets are trapezoidal. The other possible set types are constant, gaussian
and s-shaped. Rules are added by means of the add rules method. Note the projected option

14 CHAPTER 2. LEARNING GUIDE

and the rulegrid option which specifies that fuzzy sets previously created have to be used in
order to create evenly distributed rules.
Now let’s look inside the structure of the object we have defined:

>>ts.mfs{1}

ans =

1.0000 0 0 0.1667 0.3333
1.0000 0.1667 0.3333 0.6667 0.8333
1.0000 0.6667 0.8333 1.0000 1.0000

The first column of mfs contain, for each set, the code representing the type of the set (trape-
zoidal, gaussian, s-shaped). The next four are used to specify the location and the extent of the
rules.
rls is a list of the fuzzy sets associated to each rule:

>>ts.rls

ans =

1 1
2 1
3 1
1 2
2 2
3 2
...

which states for example that rule 6 has to be read as:

R(6) : IF x1 IS A3
1 AND x2 IS A2

2 THEN y = L6x.

As we have seen, fuzzy sets can be added by hand and there position and size can be changed
using the set function. The same holds for the linear consequents or the rules. An alternate
way of defining the rule base is to use the identify method.

m = identify(m,in,out,options)

optimise the TS function to fit the input-output data contained in the in and out arrays. in
must have a size of num examples � n in while out must be equal to num examples � n out.
option is a struct whose fields method, n rules, fuzzyness, ... (see help of the taksug/identify
method) let choose among different optimisation procedures and tune these procedure.
The class provides a method for evaluating the mapping given an input, eval, method for nor-
malising and denormalising the mapping (if the limits are finite). The methods jacob inputs
and jacob params are used to calculate the derivatives of the mapping respect to the inputs
and the parameters. The method check is provided to check the consistency of all the fields
defined in the taksug object.

2.2.4 The mamdani class

The mamdani class used to represent Mamdani type of fuzzy systems is very similar to the taksug
class.
The same methods are available though the calling convention can differ slightly. The following
example should be compared to the one provided for the taksug class:

2.3. HANDLING DATA WITH THE DATASET CLASS 15

>>m = mamdani(’Mamdani Mapping’,3,2);
>>m.limits = [0 0 0 0 0;1 1 1 1 1];
>>m = sets_grid(m,3,2,3,1,2);
>>m = add_rules(m,-1,{’product’ ’meancentroid’},’rulegrid’)

m =

A taksug object with the following attributes

name: ’Mamdani Mapping’
n_in: 3
n_out: 2

limits: [2x5 double]
userData: []

opt: []
date: [1999 7 28 14 17 18.6538]

optimparams: []
n_rules: 18

model_code: { 1x2 cell }
rls: [18x5 double]
mfs: { 1x5 cell }

With respect to the taksug class, it has to be highlighted that only the fields used in the
projected rules are present in the mamdani class. The linears attribute is not present and is
replaced by extra fuzzy sets (one series for each output) stored inside mfs. The rules are of the
form:

R(l) : IF x1 IS A
(l)
1 AND . . . AND xn IS A

(l)
n THEN y1 IS B

(l)
1 . . . ym IS B

(l)
m .

and rls contains for each rules the list of the fuzzy sets defining the antecedent as well as the
fuzzy sets defining the consequent of the rule.
The model code attribute, determines the T-norm used for the AND operator and the defuzzi-
fication method used during the fuzzy inference.
No identification method is defined yet.

2.3 Handling data with the dataset class

Dataset is quite a complete package to handle data. It allows to perform normalisation, statis-
tical analysis, clustering, supervised classification of data. The description of the use of dataset
exceeds the scope of this tutorial. We encourage the reader to refer to the dataset tutorial or
the dataset documentation for extensive information.

In this tutorial, we will focus on the use of the dataset constructor specifically applied to build
dataset used for regression puposes. The syntax of dataset is the following:

dataset(data)

data holds the raw data (one sample on each row, one column for each variable).

2.4 NLMIMO identification in a nutshell

The nlmimo toolbox allows a great flexibility for the identification of static and dynamic systems.
In any case the main steps which are needed to build such a system follow (let’s consider an
external system):

16 CHAPTER 2. LEARNING GUIDE

• build the system (external) defining the appropriate number of inputs and outputs;

• put the data inside a dataset object and attach it to the external object with the appro-
priate sampling time;

• define the dynamics of the system;

• define the mappings which will be used by the system, and make them consistent with the
dynamics description of the system;

• attach the mapping to the external object and link them to the outputs of the system;

• perform the identification;

• evaluate the identification results

if the results are not satisfactory (thing that usually happens at the beginning), change the
mappings or even the dynamics of the system and try again.

Chapter 3

API Reference

3.1 Data Manipulation Routines

Data collected from real processes often need to be pre-processed before being used for modeli-
sation or control. Filtering, elimination of outliers, selection and combination of data coming
from different sources are common crucial tasks that have to be carried on at an early srage in
the modelisation process.

The dataset class is used to handle the data. Once an object belonging to this class is initialized
with raw data, it is possible to perform two basic set of operations:

Basic data manipulation: concatenation of data sets, simple filtering, data normalisation, ex-
traction of a data subset, separation of data into subsets on the basis of criteria, split of the
data set for cross validation purposes.

Complex data analysis: statistical analysis, crisp clustering, fuzzy clustering, supervised classi-
fication using neural networks, decision iridia0trees, nearest neighbours and bayesian methods.

The dataset class takes care of transparently loading and storing parts of the data set from and
to the hard disk, allowing the whole toolbox to deal with very large data sets: as long as the
user respects the calling convention of the dataset class for retrieving and storing data points,
and he does not have to worry about the physical location of the data. If the needed data point
is not in RAM, it is loaded from the hard disk and changes will be saved.

Besides the functionalities it provides, the use of a separate class for storing and manipulating
data sets insure that every pieces of information related to the data - name of the variables,
possible discrete values, range of the variables, origin of a piece of data - are kept in the same
place. Moreover, the dataset methods continuously check the coherence of the dataset properties
and guarantee that the information always makes sense.

17

18 CHAPTER 3. API REFERENCE

dataset

Purpose

Creator of the dataset class

Synopsis

data
data(d)
data(data,’attr1’,val1,’attr2’,val2,...)
data(data,symbols,vartypes,labels,variables)
data(classes,data,symbols,vartypes,labels,variables)
data(datafile,variables,symbols,vartypes,labels)

Description

data creates an empty data object.

data(d) clone the data object or fix a broken data object from its struct form.

data(data,’attr1’,val1,’attr2’,val2,...) create a data object. data are the data
(each piece of data is on a different line). The couples of attr1, val1, ... are used to set
the attributes.

data(data,symbols,vartypes,labels,variables) create a data object. data are the
data (each piece of data is on a different line). labels is a column vector of the labels
(optional) corresponding to each piece of data. variables [cell], are the names of the
columns of the data. symbols [cell] are the symbolic correspondance for the symbolic
data. vartypes is a cell array containing the type of the variable for each column (’con-
tinuous’,’discrete’,’symbolic’,’class’). There can only be one ’class’ variable at a time. If
vartypes is not specified, the types are deduced from the data and the symbol field

data(classes,data,symbols,vartypes,labels,variables) create a data object. data
are the data (each piece of data is on a different line). labels is a column vector of the
labels (optional) corresponding to each piece of data. classes contains the class associ-
ated with each piece of data. variables [cell], are the names of the columns of the data.
symbols [cell] are the symbolic correspondance for the symbolic data.

data(datafile,variables,symbols,vartypes,labels) create a data object from a mat
datafile. datafile is the name of the mat file where the data are saved. The file must
contain a series of variables referenced by variables[cell]. Each of this variable must be
a column vector([double] or [cell]) of length equal to the number of data points.

Methods

• addclass add a class to the data set (obsolete)

• addfeature Adds a new feature to the data set

• addpoint Add a point to the dataset

• addsfeature Adds a new symbolic feature to the data set

3.1. DATA MANIPULATION ROUTINES 19

• addvariable Add a new variable(feature) to the data set

• bootstrap BOOTSTRAP creates n new datasets ready for Bagging purpose or cross
validation

• btstrap2 BTSTRAP2 creates n new datasets ready for Bagging purpose or cross
validation

• classgroup Groups a few classes into more general classes

• classpart selects a part (of the classes) of the data set

• csplit Cut the dataset into n pieces for x validation purposes

• cut Cut the dataset into n pieces for x validation purposes

• normalise performs a denormalisation of the continuous data field of a dataset

• display displays the dataset object

• double converts the dataset object to double

• export Export a data set to a comma delimited text file

• fs FS performs a features selection on the dataset d

• fuzzyknn performs fuzzy nearest neightbours algorithm

• fuzzyknn2 performs fuzzy nearest neightbours algorithm (matlab release)

• get Access/query dataset property values

• getmiss get missing values from a dataset

• gfkclus performs Gustaffson Kessel clustering

• horzcat Horizontal concatenation operator

• join joins two data sets

• kmeans performs kMeans clustering

•
• leave1out LEAVE1OUT performs the leave-one-out validation and computes the

confusion matrix, error rates and Kappa inside a report structure

• mkmeans performs multi prototypes clustering

• normalise NORMALISE performs the linear normalisation of a learning dataset and
transforms the corresponding testing dataset if it is provided

• normstd NORMSTD performs a normalisation of the continuous features of a learning
set and a testing set

• pick picks randomly chosen examples out of a data set

• placekernels Place kernels to be used with smoothknn

• plot plot a dataset

• postmining compute the confusion matrix and error rates between supervision and
prediction

• randfs1 RANDFS1 : a features subsets builder by sampling with replacement

• randfs2 RANDFS2 : a features subsets builder by sampling without replacement

• remPoint remove a point from a data set

• set Set object properties

• simple knn classifies a testing set using kNN

• simple knn2 classifies the query using kNN (matlab release)

• simple MLP SIMPLE MLP performs a one-hidden-layer neural network classification

• simpleknn classifies the query using kNN

20 CHAPTER 3. API REFERENCE

• simpleknn classifies the query using kNN

• size get the size of the data set

• smoothknn classifies the query using smoothknn

• subsref overload the subscript reference operator

• svm Support Vectors Machine classification

• svminit Initialise the Support Vectors for the svm classification

• vertcat vertical concatenation operator

3.1. DATA MANIPULATION ROUTINES 21

addclass

Purpose

add a class to the data set (obsolete)

Synopsis

d = addClass(d,c)

Description

d = addClass(d,c) adds class c to dataset d.

22 CHAPTER 3. API REFERENCE

addfeature

Purpose

Adds a new feature to the data set

See also

also addsfeature

3.1. DATA MANIPULATION ROUTINES 23

addpoint

Purpose

Add a point to the dataset

Synopsis

addpoint(d,varargin)

Description

addpoint(d,varargin) is equivalent to [d;dataset(varargin)] and adds a point to the
dataset.

See also

also vertcat, join

24 CHAPTER 3. API REFERENCE

addsfeature

Purpose

Adds a new symbolic feature to the data set

See also

also addsfeature

3.1. DATA MANIPULATION ROUTINES 25

addvariable

Purpose

Add a new variable(feature) to the data set

Synopsis

d = addvariable(d,v)

Description

d = addvariable(d,v) adds the variable v to the dataset d. Fills the corresponding
data with zeros.

26 CHAPTER 3. API REFERENCE

bootstrap

Purpose

BOOTSTRAP creates n new datasets ready for Bagging purpose or cross validation

Synopsis

LS = BOOTSTRAP(D,N)

Description

LS = BOOTSTRAP(D,N) D is a dataset object, N is the desired number of bootstraps.
LS is a cell array containing N new bootstrapped datasets.

See also

CUT, BTSTRAP2

3.1. DATA MANIPULATION ROUTINES 27

btstrap2

Purpose

BTSTRAP2 creates n new datasets ready for Bagging purpose or cross validation

Synopsis

[LS,LSBAR] = BTSTRAP2(D,N)

Description

[LS,LSBAR] = BTSTRAP2(D,N) D is a dataset object, N is the desired number of boot-
straps.
LS is a cell array containing N new bootstrapped datasets. LSBAR is the complementary
cell array for each bootstrap.

See also

CUT, BOOTSTRAP

28 CHAPTER 3. API REFERENCE

classgroup

Purpose

Groups a few classes into more general classes

Synopsis

out=classgroup(d,classes,groupclasses)

Description

out=classgroup(d,classes,groupclasses) groups the groups of classes specified by the
cell array classes into new classes specified by the cell array groupclasses.

See also

also classpart

3.1. DATA MANIPULATION ROUTINES 29

classpart

Purpose

selects a part (of the classes) of the data set

Synopsis

out=classpart(d,classes)

Description

out=classpart(d,classes) allows to extracts from d the data concerning the part classes
of the classes.

See also

classgroup

30 CHAPTER 3. API REFERENCE

csplit

Purpose

Cut the dataset into n pieces for x validation purposes

Synopsis

[pick, rest] = cut (d,n)

Description

[pick, rest] = cut (d,n) cuts d in n sub-dataset, each of which is placed in one cell of
the cell array pick. For each ¡code¿pickj¡/code¿, the rest of the data set is placed inside
¡code¿restj¡/code¿

Remarks

The cutting process respects the classes repartition. No Randomization is done.

See also

cut xval

3.1. DATA MANIPULATION ROUTINES 31

cut

Purpose

Cut the dataset into n pieces for x validation purposes

Synopsis

[pick, rest] = cut (d,n)

Description

[pick, rest] = cut (d,n) cuts d in n sub-dataset, each of which is placed in one cell of
the cell array pick. For each ¡code¿pickj¡/code¿, the rest of the data set is placed inside
¡code¿restj¡/code¿

Remarks

The cutting process respects the classes repartition.

See also

xval

32 CHAPTER 3. API REFERENCE

normalise

Purpose

performs a denormalisation of the continuous data field of a dataset

Synopsis

d = denormalise(d)

Description

d = denormalise(d) denormalises the dataset d.

3.1. DATA MANIPULATION ROUTINES 33

display

Purpose

displays the dataset object

Synopsis

display(d)

Description

display(d) displays the dataset object d.

34 CHAPTER 3. API REFERENCE

double

Purpose

converts the dataset object to double

Synopsis

out=double(in)

Description

out=double(in) gets the data out of the data set in and return it inside out.

3.1. DATA MANIPULATION ROUTINES 35

export

Purpose

Export a data set to a comma delimited text file

Synopsis

export(d,name)

Description

export(d,name) export the dataset d to file named name.

36 CHAPTER 3. API REFERENCE

fs

Purpose

FS performs a features selection on the dataset d

Synopsis

newd=fs(d,s)

Description

newd=fs(d,s)
d is a dataset object
s is a vector containing the index of the features to select.

newd is a dataset with selected features only.

See also

pick, cut, get

3.1. DATA MANIPULATION ROUTINES 37

fuzzyknn

Purpose

performs fuzzy nearest neightbours algorithm

Synopsis

myclass = fuzzyknn(d,query,k)

Description

myclass = fuzzyknn(d,query,k) returns inside myclass the result of the classification
of the point query using fuzzy KNN method. d is the data set and k the number of
neibourghs.

See also

newexpert, simpleknn, smoothknn

38 CHAPTER 3. API REFERENCE

fuzzyknn2

Purpose

performs fuzzy nearest neightbours algorithm (matlab release)

Synopsis

myclass = fuzzyknn2(learn,test,k)

Description

myclass = fuzzyknn2(learn,test,k) returns inside myclass the result of the classi-
fication of the dataset test using fuzzy KNN method. learn is also a dataset and k the
number of neighbours.

See also

fuzzyknn, simpleknn, smoothknn

3.1. DATA MANIPULATION ROUTINES 39

get

Purpose

Access/query dataset property values

Synopsis

d=get(data,label)

Description

d=get(data,label) returns the value of the specified property label of the data set
d. Possibles properties are:
nv: the number of variables
ns: the number of examples
nc: the number of classes
contdata: the continuous data
symbdata: the symbolic data
classes: the classes
classeslist: the list of classes
data: the data attribute
symbols: the symbols attribute
vartypes: the vartypes attribute
labels: the labels attribute
variables: the labels attribute

See also

set

40 CHAPTER 3. API REFERENCE

getmiss

Purpose

get missing values from a dataset

Synopsis

miss=getmiss(d)

Description

miss=getmiss(d)
d is a dataset miss is a vector containing the position of missing values.

See also

get

3.1. DATA MANIPULATION ROUTINES 41

gfkclus

Purpose

performs Gustaffson Kessel clustering

Synopsis

[cg, v] = gfkclus(d,n,m)

Description

[cg, v] = gfkclus(d,n,m) Finds the center of the clusters cg and their variances v
using the Gustaffson Kessel clustering method. d is the data set, n the number of proto-
types by cluster and m is the fuzzyness parameter (¿1). cg is a n rows matrix (one for
each cluster).

See also

mkmeans, fkmeans, gkclus

42 CHAPTER 3. API REFERENCE

horzcat

Purpose

Horizontal concatenation operator

Synopsis

z = horzcat(d1, d2, ...)

Description

z = horzcat(d1, d2, ...) Concatenates two or more data sets d1, d2 horizontally.
redundant classes are converted to symbolic variables.

3.1. DATA MANIPULATION ROUTINES 43

join

Purpose

joins two data sets

Synopsis

d = join(d1,d2)

Description

d = join(d1,d2) Joins two different data sets d1 and d2, even if they are not com-
patible (they do not share the same variables). This can lead to a strongly sparse data set
if the data sets are fairly different. Note also that the variables will be resorted during the
process.

See also

vertcat

44 CHAPTER 3. API REFERENCE

kmeans

Purpose

performs kMeans clustering

Synopsis

cg = kmeans(d,n)

Description

cg = kmeans(d,n) Finds the center of the clusters cg using the kMeans clustering method.
d is the data set and n the number of prototypes by cluster. cg is a n rows matrix (one
for each cluster).

See also

mkmeans, fkmeans, gkclus

3.1. DATA MANIPULATION ROUTINES 45

Purpose

See also

46 CHAPTER 3. API REFERENCE

leave1out

Purpose

LEAVE1OUT performs the leave-one-out validation and computes the confusion matrix,
error rates and Kappa inside a report structure

Synopsis

REPORT = LEAVE1OUT(ALGO, LEARNSET, P1, P2)

Description

See also

CUT, BOOTSTRAP.

3.1. DATA MANIPULATION ROUTINES 47

mkmeans

Purpose

performs multi prototypes clustering

Synopsis

[cg,cp] = mkmeans(d,n,p)
[cg,cp] = mkmeans(d,n,p,l)

Description

[cg,cp] = mkmeans(d,n,p) Finds the center of the clusters cg and there associated pro-
totypes cp using a new clustering method developped in IRIDIA. d is the data set, n the
number of clusters and p the number of prototypes by cluster. cg is a n rows matrix (one
for each cluster). cp is a p rows and n columns 3D matrix.

[cg,cp] = mkmeans(d,n,p,l) l is the weight of the center of the cluster in the definition
of the cost function minimised by the clustering method.

See also

kmeans, fkmeans, gkclus

48 CHAPTER 3. API REFERENCE

normalise

Purpose

NORMALISE performs the linear normalisation of a learning dataset and transforms the
corresponding testing dataset if it is provided

Synopsis

LEARNSET = NORMALISE(LEARNSET); [LEARNSET, TESTSET] = NORMALISE(LEARNSET, TESTSET);

Description

LEARNSET = NORMALISE(LEARNSET); [LEARNSET, TESTSET] = NORMALISE(LEARNSET, TESTSET);
each feature value will be linearly computed between 0 and 1.
Algorithm

newd = (d−min(d))/(max(d)−min(d)) (3.1)

See also

NORMSTD

3.1. DATA MANIPULATION ROUTINES 49

normstd

Purpose

NORMSTD performs a normalisation of the continuous features of a learning set and
a testing set

Synopsis

LEARNSET = NORMSTD(LEARNSET); [LEARNSET, TESTSET] = NORMSTD(LEARNSET, TESTSET);

Description

Remarks

The normalisation transforms the data so that their mean is zero and standard devia-
tion 1.

See also

normalise

50 CHAPTER 3. API REFERENCE

pick

Purpose

picks randomly chosen examples out of a data set

Synopsis

[out,theRest]=pick(d,n)

Description

[out,theRest]=pick(d,n) picks n randomly chosen example out of dataset d. The picked
examples are rturned inside out, the others are inside theRest.

See also

cut

3.1. DATA MANIPULATION ROUTINES 51

placekernels

Purpose

Place kernels to be used with smoothknn

Synopsis

kernels=placekernels(data)
kernels=placekernels(data,num)

Description

kernels=placekernels(data) Build the metrics (the kernels) needed by smoothknn
using a non supervised clustering algorithm (Gustaffson Kessel). The number of kernels
for each class is (right now badly) guessed.

kernels=placekernels(data,num) Build the metrics (the kernels) needed by smoothknn
using a non supervised clustering algorithm (Gustaffson Kessel). num kernels are computed
for each class.

52 CHAPTER 3. API REFERENCE

plot

Purpose

plot a dataset

Synopsis

h=plot(d,colors)
h=plot(d,colors,classes)
h=plot(d,colors,classes,vars)

Description

h=plot(d,colors) plot the dataset d using the cell array of colors colors. Every classes
are plot among the two first variables. The handles of the plots for the different classes
are returned inside h.

h=plot(d,colors,classes) Only the classes specified inside the cell array classes are
plot with respect to the two first features.

h=plot(d,colors,classes,vars) The classes specified inside the cell array classes are
plot with respect to the variables specified inside the array vars.

3.1. DATA MANIPULATION ROUTINES 53

postmining

Purpose

compute the confusion matrix and error rates between supervision and prediction

See also

confmat

54 CHAPTER 3. API REFERENCE

randfs1

Purpose

RANDFS1 : a features subsets builder by sampling with replacement

Synopsis

FS = RANDFS1(D,PROP,NB)

Description

FS = RANDFS1(D,PROP,NB)

FS = cell array containing the subsets of features
D = training set build with ’dataset’
PROP = percentage of the total number of attributes
NB = number of subsets

Examples

fs = randfs1(train,0.5,10);
data=get(train,’contdata’);
d=data(:,fs1);

See also

randfs2

3.1. DATA MANIPULATION ROUTINES 55

randfs2

Purpose

RANDFS2 : a features subsets builder by sampling without replacement

Synopsis

FS = RANDFS2(D,PROP,NB)

Description

FS = RANDFS2(D,PROP,NB)

FS = cell array containing the subsets of features
D = training set build with ’dataset’
PROP = percentage of the total number of attributes
NB = number of subsets

Examples

fs = randfs1(train,0.5,10);
data=get(train,’contdata’);
d=data(:,fs1);

See also

randfs1

56 CHAPTER 3. API REFERENCE

remPoint

Purpose

remove a point from a data set

Synopsis

remPoint(d,num)

Description

remPoint(d,num) remove point number num from dataset d.

See also

addpoint, addvariable

3.1. DATA MANIPULATION ROUTINES 57

set

Purpose

Set object properties

Synopsis

set(d,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)
m out = set(d,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)

Description

set(d,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value of the
attribute AttrName1, AttrName2, ... associated to the object d.

m out = set(d,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value
of the attribute AttrName1, AttrName2, ... associated to the object d and return the mod-
ified model inside m out. The original model is not modified. The following AttrName are
recognised:
contdata: the continuous data
symbdata: the symbolic data
classes: the classes
labels: the labesl of the data points
vartypes: the types of the variables

See also

get

58 CHAPTER 3. API REFERENCE

simple knn

Purpose

classifies a testing set using kNN

Synopsis

[out]=simpleknn(data,test,n)

Description

[out]=simpleknn(data,test,n) The classification of the dataset test is performed using
a n nearest neighbours classifier from the dataset DATA.

See also

smoothknn, fuzzyknn

3.1. DATA MANIPULATION ROUTINES 59

simple knn2

Purpose

classifies the query using kNN (matlab release)

Synopsis

[out]=simple knn2(data,query)
[out]=simpleknn(data,query,n)

Description

[out]=simple knn2(data,query) classifies the point query and returns the result in-
side classes out.

[out]=simpleknn(data,query,n) The classification is performed using a n nearest neigh-
bours classifier.

See also

smoothknn, simpleknn, fuzzyknn

60 CHAPTER 3. API REFERENCE

simple MLP

Purpose

SIMPLE MLP performs a one-hidden-layer neural network classification

Synopsis

CLASS = SIMPLE MLP(LEARNSET,TESTSET,ALGO,NBEPOCHS,GOAL)

Description

CLASS = SIMPLE MLP(LEARNSET,TESTSET,ALGO,NBEPOCHS,GOAL)

LEARNSET, TESTSET are ’dataset’ objects.
GOAL : first stopping condition, the global error rate. Common value is 0.01.
NBEPOCHS : second stopping condition, the number of epochs. Common value is 50.
ALGO :
- ’trainlm’ Levenberg-Marquardt, slow and memory consuming but efficient.
- ’trainrp’ Resilient backpropagation, fast, NBEPOCHS bigger.
- ’trainbfg’ BFGS Quasi-Newton, fast, NBEPOCHS bigger.

’Neural Networks’ Toolbox required.

See also

BAG MLP, BAGFS MLP, MFS MLP, simple knn, simple c45, simple lda

3.1. DATA MANIPULATION ROUTINES 61

simpleknn

Purpose

classifies the query using kNN

Synopsis

[out,confid]=simpleknn(data,query)
[out,confid]=simpleknn(data,query,n)

Description

[out,confid]=simpleknn(data,query) classifies the point query and returns the result
inside classes out with a confidence confid. The classification is done by means of a 2
nearest neighbours method.

[out,confid]=simpleknn(data,query,n) The classification is performed using a n near-
est neighbours classifier.

See also

smoothknn, fuzzyknn

62 CHAPTER 3. API REFERENCE

simpleknn

Purpose

classifies the query using kNN

Synopsis

[out]=simpleknn(data,query)
[out]=simpleknn(data,query,n)

Description

[out]=simpleknn(data,query) classifies the point query and returns the result inside
classes out with a confidence confid. The classification is done by means of a 2 nearest
neighbours method.

[out]=simpleknn(data,query,n) The classification is performed using a n nearest neigh-
bours classifier.

See also

smoothknn, fuzzyknn

3.1. DATA MANIPULATION ROUTINES 63

size

Purpose

get the size of the data set

Synopsis

out=size(d)
out=size(d,n)

Description

out=size(d) returns the dimensions (number of examples, number of variables) of the
database d.

out=size(d,n) returns either the number of examples(n = 1) or the number of variables(n
= 2) of the database d.

See also

also get

64 CHAPTER 3. API REFERENCE

smoothknn

Purpose

classifies the query using smoothknn

Synopsis

[out,confid]=smoothknn(data,query)
[out,confid]=smoothknn(data,query,kernels)
[out,confid]=smoothknn(data,query,kernels,ratio)

Description

[out,confid]=smoothknn(data,query) classifies the point whose the features are equal
to query inside classes out with a confidence confid. The classification is done by means
of a kNN with fixed metric using the dataset data.

[out,confid]=smoothknn(data,query,kernels) The classification is performed using
an adaptive metric based on kernels.

[out,confid]=smoothknn(data,query,kernels,ratio) Ratio increases the smoothness
of the algorithm by extending the zone of influence of each point (equivalent to take a
wider neibourghood).

See also

simpleknn, fuzzyknn

3.1. DATA MANIPULATION ROUTINES 65

subsref

Purpose

overload the subscript reference operator

Synopsis

function out=subsref(d,s)

Description

function out=subsref(d,s) subsref(d,s) will return either a sub-datatset or a part of
the dataset object depending on the subscript method. d is the data set and s is the
reference specification structure.

See also

also subsref

66 CHAPTER 3. API REFERENCE

svm

Purpose

Support Vectors Machine classification

Synopsis

class = svm(d, data, sv, act)

Description

class = svm(d, data, sv, act) classifies the piece of data data using dataset d and
support vectors sv. act is the activation.

See also

svminit

3.1. DATA MANIPULATION ROUTINES 67

svminit

Purpose

Initialise the Support Vectors for the svm classification

Synopsis

sv = svminit(d, ker, bound)

Description

sv = svminit(d, ker, bound) computes the support vectors needed to perform sup-
port machine classification and return them inside sv. d is the data set, ker specifies the
type of kernel.

See also

svm

68 CHAPTER 3. API REFERENCE

vertcat

Purpose

vertical concatenation operator

Synopsis

z = vertcat(d1, d2, ...)

Description

z = vertcat(d1, d2, ...) concatenates two or more data sets d1, d2 etc. Symbolic
codes are reorganised in order to avoid redundancies.

See also

also

3.2. HIGH LEVEL ROUTINES 69

3.2 High Level Routines

3.2.1 System Abstract Class

The system class centralizes the information needed to describe a general static or dynamic
system. It defies the number of inputs and outputs of the system and their limits. All the
input-output data associated with the system is stores in an attribute of type dataset. Since
a system can be represented using an internal (state space based) or external (input-output
based) representation the system class has been defined as an abstract class and captures the
common features of these two alternative representations. Two subclasses, the external and
the internal one, implement these alternative descriptions of a system.

70 CHAPTER 3. API REFERENCE

system

Purpose

Constructor for the system abstract class

Synopsis

m=system
m=system(name,n in,n out)

Description

m=system creates a new general system skeleton

m=system(name,n in,n out) creates a new general system with n in inputs and n out
outputs. The name name is associated to it.

Methods

• add data add a input-output data set to the model

• add mapping add a mapping to a system object

• clone output clone the mapping associated to an output

• denormalise normalises the system M

• display Display an object of class system

• eval computes the value of the system for some regressor

• get gets the value of the attribute of an object

• identify Identify the system from data (abstact method)

• interp model computes the jacobian of the model by interpoling local models

• jacob inputs computes the jacobian of the model

• jacob params computes the jacobian of the model

• normalise normalises the system M

• plot plot the system

• set Set object properties

See also

3.2. HIGH LEVEL ROUTINES 71

add data

Purpose

add a input-output data set to the model

Synopsis

m=add data(m)
m=add data(m,data,t)

Description

m=add data(m) removes all the input-output data from the model M.

m=add data(m,data,t) puts data into the field ’data’ of the model m, data must be a
data object. The optional variable t specifies the sampling time of the model (default
continuous = 0).

Remarks

This function is used to inizialize the System ’data’ field with the model input-output
data. The data is stored in the ’data’ field which store.

72 CHAPTER 3. API REFERENCE

add mapping

Purpose

add a mapping to a system object

Synopsis

m=add mapping(m)
m=add mapping(m,mapping)

Description

m=add mapping(m) clears the mapping field of the object

m=add mapping(m,{mapping})

Remarks

This method adds a mapping to the list of the current mappings of the system object.
The links field, which connects the mapping with the output, must be set using the set
method.

3.2. HIGH LEVEL ROUTINES 73

clone output

Purpose

clone the mapping associated to an output

Synopsis

m = clone output(m,j,label)

Description

m = clone output(m,j,label) clones the mapping associated to the output j, and gives
it the new name specified by new name.

74 CHAPTER 3. API REFERENCE

denormalise

Purpose

normalises the system M

Synopsis

m=normalise(m)

Description

m=normalise(m) denormalises the system m

Remarks

This function denormalises a mapping in order to make fit its limits to the original values
before normalisation.

3.2. HIGH LEVEL ROUTINES 75

display

Purpose

Display an object of class system

Synopsis

display(m)

Description

display(m) Display the object m of class system

See also

76 CHAPTER 3. API REFERENCE

eval

Purpose

computes the value of the system for some regressor

Synopsis

out=eval(m,r,j)

Description

out=eval(m,r,j) returns the value out of the output(s) j of mapping m given the in-
put regressor r.

3.2. HIGH LEVEL ROUTINES 77

get

Purpose

gets the value of the attribute of an object

Synopsis

d = get(m,label,opt)

Description

d = get(m,label,opt) gets the value of the attribute label associated to the object
m and return it inside d. The following codes are recognised:
name: returns the name of the object
n in: returns the number of inputs of the system
n out: returns the number of outputs of the system
data: returns the data set linked to the system
T: returns the sampling period of the discrete system, 0 if continuous
mapping: returns the array of mappings
links: returns the links array which defines which output is computed by which

mapping
limits: returns the bounds of the inputs and outputs
userData: returns the ’userData’ field
opt: returns the ’opt’ field
date: returns the date of creation of the object
mapfield: let the user access directly property of the mappings. When used, opt

must contain a 2 elements cell array n ’property’. n is the index of the
mapping and ’property’ is the name of the property which has to be
accessed. An even more convenient way to access mappings’ fields is a
achieved through the syntax sn.property.

numparams: returns the number of parameters to be optimised
params: returns the parameters to be optimised

See also

set

78 CHAPTER 3. API REFERENCE

identify

Purpose

Identify the system from data (abstact method)

Synopsis

m = identify(m,j,options)

Description

m = identify(m,j,options) performs the identification of the model m using the data
embeded inside the object for the output j. Use options in order to specify the identifi-
cation method and options.

3.2. HIGH LEVEL ROUTINES 79

interp model

Purpose

computes the jacobian of the model by interpoling local models

Synopsis

interp model(m,r,j)

Description

interp model(m,r,j) computes for output j the jacobian of the model m with respect
to the regressor of the system at point r.

Remarks

The procedure for computing the jacobian depends on the underlying representation of the
model. The result out is an array of size number of outputs * number of inputs containing
the derivatives of the outputs with respect to the inputs.

80 CHAPTER 3. API REFERENCE

jacob inputs

Purpose

computes the jacobian of the model

Synopsis

jacob inputs(m,r,j)

Description

jacob inputs(m,r,j) computes for output j the jacobian of the model m with respect
to the regressor of the system at point r.

Remarks

The procedure for computing the jacobian depends on the underlying representation of the
model. The result out is an array of size number of outputs * number of inputs containing
the derivatives of the outputs with respect to the inputs.

3.2. HIGH LEVEL ROUTINES 81

jacob params

Purpose

computes the jacobian of the model

Synopsis

jacob params(m,r)
jacob params(m,r,j)

Description

jacob params(m,r) computes for each output the jacobian of the model with respect
to the parameters at regressor r.

jacob params(m,r,j) computes for output(s) j the jacobian of the model with respect
to the parameters at regressor regressor.

82 CHAPTER 3. API REFERENCE

normalise

Purpose

normalises the system M

Synopsis

m=normalise(m)

Description

m=normalise(m) normalises the system m

Remarks

This function normalizes a mapping in order to make fit its limits to the interval [0,1]

3.2. HIGH LEVEL ROUTINES 83

plot

Purpose

plot the system

Synopsis

f=plot(m)

Description

f=plot(m)

See also

84 CHAPTER 3. API REFERENCE

set

Purpose

Set object properties

Synopsis

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)
m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)

Description

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value of the
attribute AttrName1, AttrName2, ... associated to the object m.

m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value
of the attribute AttrName1, AttrName2, ... associated to the object m and return the mod-
ified model inside m out. The original model is not modified. The following AttrName are
recognised:
name: sets the name of the system
n in: sets the number of inputs of the system
n out: sets the number of outputs of the system
data: sets the data set linked to the system
T: sets the sampling period of the discrete system, 0 if continuous
mapping: sets the array of mappings
links: sets the links array which defines which output is computed by which

mapping
limits: sets the limits of the domain of definition of the mapping. The value

must be a 2*n in matrix where the upper and lever saturation level are
userData: sets the ’userData’ field
opt: sets the ’opt’ field
date: sets the date of creation of the object
mapfield: let the user access directly property of the mappings. When used, value

must contain a 3 elements cell array n ’property’ mapvalue. n is the index
of the mapping, ’property’ is the name of the property which has to be
changet and mapvalue is the new value. An even more convenient way
to change mappings’ fields is a achieved through the syntax sn.property
= mapvalue.

params: sets the parameters to be optimised

See also

get

3.2. HIGH LEVEL ROUTINES 85

3.2.2 Internal Class

In the case of a system which uses an external representation the input-output relation is of the
type:

dy

dt
= f(y, u)

in the case of a continuous system, and

y(t + 1) = f(y(t), u(t))

in the case of a discrete time system.

The different input-output relations, which are represented using an objects belonging to one of
the subclasses of the mapping class, are stored inside an attribute of the external class. If a sys-
tem is multi-outputs, a different relation (a linear one, a fuzzy representation, a non-parametric
approach) can be defined for each output. This allows a very general representation and lets
the user experiment different types and sizes of models.

86 CHAPTER 3. API REFERENCE

internal

Purpose

Constructor for the internal class

Synopsis

m=internal
m=internal(name,n in,n out)
m=internal(name,n in,n out,n state)

Description

m=internal creates a new general system skeleton

m=internal(name,n in,n out) creates a new general system with n in inputs and n out
outputs. The name name is associated to it.

m=internal(name,n in,n out,n state) creates a new general system with n in inputs,
n out outputs and n state states. The name name is associated to it.

Methods

• add statemapping add a mapping for describing the state of an internal object

• conicity compute the conicity stabity criterium

• display Display an object of class internal

• eval state computes the value of the state of a system for some regressor

• get gets the value of the attribute of an object

• glob indice Compute the third stability indice for a closed loop

• identify Identify the system from data (abstact method)

• jacob cloop Compute the jacobian with respect to the state for a closed loop

• jacob inputs computes the jacobian of the model

• jacob params computes the jacobian of the model

• loc indices Compute the first and the second stability indices for a closed loop

• regress

• seek eq Use the optimisation toolbox to find a cl

• set Set object properties

• stateregress Compute the regressor for the state mapping

See also

also

3.2. HIGH LEVEL ROUTINES 87

add statemapping

Purpose

add a mapping for describing the state of an internal object

Synopsis

m=add statemapping(m)
m=add statemapping(m,mapping)

Description

m=add statemapping(m) clears the statemapping field of the object

m=add statemapping(m,{mapping})

Remarks

This method adds a mapping to the list of the current mappings attached to the state
of the internal object. The links field, which connects the mapping with the state output,
must be set using the set method.

88 CHAPTER 3. API REFERENCE

conicity

Purpose

compute the conicity stabity criterium

Synopsis

conicity(plant,range,params,controller)
conicity(plant,range,controller)

Description

conicity(plant,range,params,controller) coputes the conicity stability criterium for
the plant plant in the range specified by the array range with the static controller
controller.

Remarks

This method is applicable only if the plant system is has single takagi sugeno mapping
for all the outputs or it is a linear one. In addition the controller must be a static one.
The outputs of the function are: CONICITY INDEX = CONIC DESVIATION / CONIC
ROBUSTNESS CONIC DEVIATION = GAIN(CONTROLLER - CENTRE) CONIC RO-
BUSTNESS = 1 / GAIN(FEEDB((A,B,C,D),CENTRE) where centre is the center of
the cone which is calculated with the method specified in the field search method of the
params structure. Possible values for this field are:
linearization: which uses a linarization technique for finding the center of the cone

if no search method is specified the linearization techique is used.

3.2. HIGH LEVEL ROUTINES 89

display

Purpose

Display an object of class internal

Synopsis

display(m)

Description

display(m) Display the object m of class internal

See also

90 CHAPTER 3. API REFERENCE

eval state

Purpose

computes the value of the state of a system for some regressor

Synopsis

out=eval state(m,r,j)

Description

out=eval state(m,r,j) returns the value out of the state(s) j of mapping m given the
input regressor r.

3.2. HIGH LEVEL ROUTINES 91

get

Purpose

gets the value of the attribute of an object

Synopsis

d = get(m,label,opt)

Description

d = get(m,label,opt) gets the value of the attribute label associated to the object
m and return it inside d. The following codes are recognised:
name: returns the name of the object
n in: returns the number of inputs of the system
n out: returns the number of outputs of the system
data: returns the data set linked to the system
T: returns the sampling period of the discrete system, 0 if continuous
mapping: returns the array of mappings
links: returns the links array which defines which output is computed by which

mapping
limits: returns the bounds of the inputs and outputs
userData: returns the ’userData’ field
opt: returns the ’opt’ field
date: returns the date of creation of the object
mapfield: let the user access directly property of the mappings. When used, opt

must contain a 2 elements cell array n ’property’. n is the index of the
mapping and ’property’ is the name of the property which has to be
accessed. An even more convenient way to access mappings’ fields is a
achieved through the syntax sn.property. In both syntax, if n is negative,
the ¡CODE¿abs(n)¡/CODE¿ mapping describing the state is accessed.

numparams: returns the number of parameters to be optimised
params: returns the parameters to be optimised
n state: returns the number of states
state: returns the state vector of the system
statemapping: returns the mappings used to describe the state
statelinks: returns the links array which defines which state is computed using which

statemapping
statelimits: returns the bounds of the states
statemapfield: let the user access directly property of the statemappings. When used,

opt must contain a 2 elements cell array n ’property’. n is the index of
the mapping and ’property’ is the name of the property which has to be
accessed.

See also

set

92 CHAPTER 3. API REFERENCE

glob indice

Purpose

Compute the third stability indice for a closed loop

Synopsis

[i1,i2] = glob indice(m, c, y d, v, limits)

Description

[i1,i2] = glob indice(m, c, y d, v, limits) m is the model (external) and c is the
controller. y d is the desired output and v are the perturbations.

See also

local indice

3.2. HIGH LEVEL ROUTINES 93

identify

Purpose

Identify the system from data (abstact method)

Synopsis

m = identify(m,in,out,options)

Description

m = identify(m,in,out,options) performs the identification of the model m using the
data embeded inside the object. Use options in order to specify the identification method
and options.

94 CHAPTER 3. API REFERENCE

jacob cloop

Purpose

Compute the jacobian with respect to the state for a closed loop

Synopsis

out = jacob cloop(m,c,yd,v)

Description

out = jacob cloop(m,c,yd,v)

See also

also

3.2. HIGH LEVEL ROUTINES 95

jacob inputs

Purpose

computes the jacobian of the model

Synopsis

jacob inputs(m,r,j)

Description

jacob inputs(m,r,j) computes for output j the jacobian of the model m with respect
to the regressor of the system at point r.

Remarks

The procedure for computing the jacobian depends on the underlying representation of the
model. The result out is an array of size number of outputs * number of inputs containing
the derivatives of the outputs with respect to the inputs.

96 CHAPTER 3. API REFERENCE

jacob params

Purpose

computes the jacobian of the model

Synopsis

jacob params(m,r)
jacob params(m,r,j)

Description

jacob params(m,r) computes for each output the jacobian of the model with respect
to the parameters at regressor r.

jacob params(m,r,j) computes for output(s) j the jacobian of the model with respect
to the parameters at regressor regressor.

3.2. HIGH LEVEL ROUTINES 97

loc indices

Purpose

Compute the first and the second stability indices for a closed loop

Synopsis

[i1,i2] = loc indices(m,c,yd,v,eq m,eq c)

Description

[i1,i2] = loc indices(m,c,yd,v,eq m,eq c) m is the model (external) and c is the
controller. y d is the desired output and v are the perturbations.

See also

glob indice

98 CHAPTER 3. API REFERENCE

regress

Purpose

Synopsis

[ir, or] = regress(m,j)

Description

[ir, or] = regress(m,j)

See also

3.2. HIGH LEVEL ROUTINES 99

seek eq

Purpose

Use the optimisation toolbox to find a cl

Synopsis

seek eq(m,c,yd,options)

Description

seek eq(m,c,yd,options) Finds the equilibrium of the closed loop formed by the model
m and the controller c for a set point of yd and a perturbation of v. options contains all
the options of the algorithm.

Remarks

-loop equil.

See also

100 CHAPTER 3. API REFERENCE

set

Purpose

Set object properties

Synopsis

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)
m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)

Description

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value of the
attribute AttrName1, AttrName2, ... associated to the object m.

m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value
of the attribute AttrName1, AttrName2, ... associated to the object m and return the mod-
ified model inside m out. The original model is not modified. The following AttrName are
recognised:
name: sets the name of the system
n in: sets the number of inputs of the system
n out: sets the number of outputs of the system
data: sets the data set linked to the system
T: sets the sampling period of the discrete system, 0 if continuous
mapping: sets the array of mappings
links: sets the links array which defines which output is computed by which

mapping
limits: sets the limits of the domain of definition of the mapping. The value

must be a 2*n in matrix where the upper and lever saturation level are
userData: sets the ’userData’ field
opt: sets the ’opt’ field
date: sets the date of creation of the object
mapfield: let the user access directly property of the mappings. When used, value

must contain a 3 elements cell array n ’property’ mapvalue. n is the index
of the mapping, ’property’ is the name of the property which has to be
changet and mapvalue is the new value. An even more convenient way to
change mappings’ fields is a achieved through the syntax sn.property =
mapvalue. In both syntax, if n is negative, the ¡CODE¿abs(n)¡/CODE¿
mapping describing the state is accessed.

params: sets the parameters to be optimised
n state: sets the number of states
state: sets the state vector of the system
statemapping: sets the mappings used to describe the state
statelinks: sets the links array which defines which state is computed using which

statemapping
statelimits: sets the bounds of the states

See also

get

3.2. HIGH LEVEL ROUTINES 101

stateregress

Purpose

Compute the regressor for the state mapping

Synopsis

[ir, or] = stateregress(m,j)

Description

[ir, or] = stateregress(m,j) does exactly the same as regress for the state mapping

See also

regress

102 CHAPTER 3. API REFERENCE

3.2.3 External Class

In the case of internal representation the system is described by the following input output
relationships:

ẋ = a(x) + b(u)

y = c(x) + d(u)

or in the case of a continuous time system

x(t + 1) = a(x(t)) + b(u(t))

y(t) = c(x(t)) + d(u(t))

in the case of a discrete time system.

In the class internal, mapping objects are used to describe the evolution of the state variables
in the same way they are used for the outputs. It is possible to choose a different model for each
of the internal variables of the system as well as for its outputs.

3.2. HIGH LEVEL ROUTINES 103

external

Purpose

Constructor for the external class

Synopsis

m=external
m=external(m)
m=external(name,n in,n out)

Description

m=external creates a new general external skeleton.

m=external(m) clone the external object m. This can be also used to transform a structure
in a external object since the common fields are used to inizialize the external object.

m=external(name,n in,n out) creates a new general system with n in inputs and n out
outputs. The name name is associated to it.

Methods

• add dynamics add the dynamical description of the model

• build regressors build the regresors for a MIMO system

• check checks the consistency of all the fields of a external object

• display Display an object of class external

• error computes the mean square error of the model

• errordb Graphical User Interface for inspecting the errors of the mappings

• get gets the value of the attribute of an object

• identify Identify the system from data

• regress extracts the regressors from the data

• set Set object properties

• simulate simulates the model

• simulation error computes the mean square error of the simulated model

104 CHAPTER 3. API REFERENCE

add dynamics

Purpose

add the dynamical description of the model

Synopsis

m=add dynamics(m,dyn)
m=add dynamics(m,ny,nu,nd)

Description

m=add dynamics(m,dyn) attaches to the model m the dynamic description of the model
present in the structure dyn which must include the fields ’nu’, ’ny’ and ’nd’, defining the
appropriate matrixes of the inputs, outputs and delays of the system.

m=add dynamics(m,ny,nu,nd) attaches to the model m the dynamic description of the
system as defined in the arrays ny, nu, and nd.

Remarks

This is done by inizializing the ’nu’, ’ny’ and ’nd’ subfields of the ’dynamics’ field of the
model. These define the structure of the regressors and therefore the dynamical behaviour
of the system. ’ny’ is a num out * num out square matrix which contains the relationships
of each output (each row) with all the other outputs. Each entry ij indicates the number
of past values associated to the output j used in the regressor of the output i. ’nu’ is a
num out * num in matrix defining the relationships between the outputs and each input.
Each entry ij indicates the number of past values associated to the input j used in the
regressor of the output i. Finally ’nd’ is a num out * num in matrix defining the delay of
the inputs respect to the outputs. Each entry ij indicates the delay of the input j used
in the regressor of the output i.

See also

get

3.2. HIGH LEVEL ROUTINES 105

build regressors

Purpose

build the regresors for a MIMO system

Synopsis

[in,out]=build regressors(m,z,subset);

Description

[in,out]=build regressors(m,z,subset); given the inputs outputs z=[outputs inputs],
computes subset regressors.

Remarks

For z=[y u]; ino(t)=[y1(t-1),y1(t-2),...,y1(t-ny(o,1)),y2(t-1),y2(t-2),...,y2(t-ny(o,2)), ... u1(t-
nd(O,1)),u1(t-1-nd(O,1)),...,u1(t-nu(o,1)-nd(O,1)), ...] outo(t)=yo(t) It works even if y1
... are all vectors (useful for the computation of the derivatives)

106 CHAPTER 3. API REFERENCE

check

Purpose

checks the consistency of all the fields of a external object

Synopsis

check(m)

Description

check(m) check the consistency of a external object.

Remarks

This function has been provided in order to make the external class more rouboust since it
checks a external object for consistency of the data defined in its fields. If a inconsistency
is found, an error message is displayed.

3.2. HIGH LEVEL ROUTINES 107

display

Purpose

Display an object of class external

Synopsis

display(m)

Description

display(m) Display the object m of class external

108 CHAPTER 3. API REFERENCE

error

Purpose

computes the mean square error of the model

Synopsis

err=error(m,j)
err=error(m,data,j)

Description

err=error(m,j) returns the mean square error of the model respect the output j.

err=error(m,data,j) get the error of the model respect the data data and the output
j. data must be an object of the class dataset.

Remarks

This function evaluates the mean square error of the model respect to the reference set
of values given as output data. This is performed by the function by calling the ’eval’
method, obtaining the extimated output of the model and comparing it with the reference
one.

See also

simulation error

3.2. HIGH LEVEL ROUTINES 109

errordb

Purpose

Graphical User Interface for inspecting the errors of the mappings

See also

110 CHAPTER 3. API REFERENCE

get

Purpose

gets the value of the attribute of an object

Synopsis

d = get(m,label,options)

Description

d = get(m,label,options) gets the value of the attribute label associated to the object
m and return it inside d. The following codes are recognised:
name: returns the name of the object
n in: returns the number of inputs of the system
n out: returns the number of outputs of the system
data: returns the data set linked to the system
T: returns the sampling period of the discrete system, 0 if continuous
mapping: returns the array of mappings
links: returns the links array which defines which output is computed by which

mapping
limits: returns the bounds of the inputs and outputs
userData: returns the ’userData’ field
opt: returns the ’opt’ field
date: returns the date of creation of the object
mapfield: let the user access directly property of the mappings. When used, opt

must contain a 2 elements cell array n ’property’. n is the index of the
mapping and ’property’ is the name of the property which has to be
accessed. An even more convenient way to access mappings’ fields is a
achieved through the syntax sn.property.

numparams: returns the number of parameters to be optimised
params: returns the parameters to be optimised
dynamics: returns the dynamical description of the regressors
horiz length: returns the width of the time window used to compute the outputs

See also

set

3.2. HIGH LEVEL ROUTINES 111

identify

Purpose

Identify the system from data

Synopsis

m = identify(m)
m = identify(m,j,options)

Description

m = identify(m) performs the identification of the model m using the data embedded
inside the object for all the outputs of the system, using the defautl values of the identifi-
cation methods.

m = identify(m,j,options) performs the identification of the model m using the data
embeded inside the object for the outputs listed in the array j. Use options in order to
specify the identification method and options.

See also

eval

112 CHAPTER 3. API REFERENCE

regress

Purpose

extracts the regressors from the data

Synopsis

[r in,r out]=get regressors(m)
[r in,r out]=get regressors(m,j)

Description

[r in,r out]=get regressors(m) extracts the regressors from the model m, for all the
outputs of the system.

[r in,r out]=get regressors(m,j) extracts the regressors from the model m, for all the
outputs of the system defined in the array j.

Remarks

This function uses the dynamical system representation stored in the ’dynamics’ field
to extract the regressors form the input-output data stored in the ’data’ field. The func-
tion returns the input regressors r in in a cell array. Each element of the cell array is a
regressor associated with an output. Each regressor is an array of size size regressor *
num exaples, where size regressor depends from the structure of the regressor defined
in the dynamical description of the system, and num exaples is the number of exaples
given in the input-output data set. r in is a cell array returing the corrispondent output
of each regressor taken from the output data set. Each entry in the cell array is a vector
of size 1 * num exaples.

3.2. HIGH LEVEL ROUTINES 113

set

Purpose

Set object properties

Synopsis

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)
m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)

Description

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value of the
attribute AttrName1, AttrName2, ... associated to the object m.

m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value
of the attribute AttrName1, AttrName2, ... associated to the object m and return the mod-
ified model inside m out. The original model is not modified. The following AttrName are
recognised:
name: sets the name of the system
n in: sets the number of inputs of the system
n out: sets the number of outputs of the system
data: sets the data set linked to the system
T: sets the sampling period of the discrete system, 0 if continuous
mapping: sets the array of mappings
links: sets the links array which defines which output is computed by which

mapping
limits: sets the limits of the domain of definition of the mapping. The value

must be a 2*n in matrix where the upper and lever saturation level are
userData: sets the ’userData’ field
opt: sets the ’opt’ field
date: sets the date of creation of the object
mapfield: let the user access directly property of the mappings. When used, value

must contain a 3 elements cell array n ’property’ mapvalue. n is the index
of the mapping, ’property’ is the name of the property which has to be
changet and mapvalue is the new value. An even more convenient way
to change mappings’ fields is a achieved through the syntax sn.property
= mapvalue.

params: sets the parameters to be optimised
dynamics: sets the dynamics of the system (please use add dynamics instead)

See also

get

114 CHAPTER 3. API REFERENCE

simulate

Purpose

simulates the model

Synopsis

[res,m]=simulate(m)
[res,m]=simulate(m,time)

Description

[res,m]=simulate(m) simulate the model m using the input data.

[res,m]=simulate(m,time) simulate the model m for the time horizon time

Remarks

This function performs a simulation of the model m using the input data and feeding
back the results of the simulation to calculate at each step the regressors. The result of
the simulation res is a simulation time * num outputs array.

3.2. HIGH LEVEL ROUTINES 115

simulation error

Purpose

computes the mean square error of the simulated model

Synopsis

m=simulation error(m,j,’plot’)
m=simulation error(m,data,j)

Description

m=simulation error(m,j,’plot’) get the simulation error of the model m respect the
output j. If the instead of the number of the output the label ’all’ is given to the function
the error respect all the outputs is returned in an array. The optional label plot may be
specified if a plot of the original data and the simulation is desired.

m=simulation error(m,data,j) get the error of the simulated model m respect the out-
put j and the data data input-output set. data must be a structure defining the ’dat in’
and ’dat out’ fields which contain the input output data. If the instead of the number
of the output j the label ’all’ is given to the function the error respect all the outputs is
returned in an array. The optional label ¡code¿’plot’¡/code¿ may be specified if a plot of
the original data and the simulation is desired.

Remarks

This function performs a simulation of the model using the simulate method and then
calculates the mean square error by comparing the simulated output with the value of the
output contained in the output data set.

See also

error

116 CHAPTER 3. API REFERENCE

3.3 Low Level Routines

3.3.1 Mapping Abstract Class

The mapping class is used to define the modeling of a process. Since, as describe in section ,
it is possible to choose among different possible alternatives for defining the mapping between
a specified number of inputs and outputs, the mapping abstract class, defines all the features
which are common to all the possible mapping, leaving the definition of the details, which are
dependent from the particular descriptor, to its subclasses which define the different approaches
which can be used for process modeling. The mapping class stores in its attributes the number
of input and the number of output parameters of the mapping, as well as their limits. The main
abstract methods defined by the class are identify, for performing the identification of the
model, eval which is used to evaluate the mapping given the input values, and jacob inputs
and jacob params, for computing the jacobian of the model respect the inputs and the param-
eters. The mapping could be normalizing and denormalizing as needed. All these are defined as
abstract methods, that is define only the calling convention and the returned values, and need
to be implemented at the level of the subclasses since the operations which they perform depend
on the particular descriptor.

Virtually every type of system representation can be implemented as a subclass of the mapping
class. At present the following mappings are available in the toolbox:

• linear systems

• Mamdani fuzzy systems

• Takagi-Sugeno fuzzy systems

• lazy learning local modeling (integrated from [?])

• mixture of experts modeling

New mappings are easily added by defining other subclasses of the mapping class.
With the exception of the linear models, all the mappings may be used to define nonlinearities.
They can be seen as different ways of parametrising nonlinearities. These methods have been
shown to be universal approximators for certain classes of functions. For example fuzzy logic
systems are universal approximators for continuous functions defined on compact sets [?]. This
means that these methods are equivalent with the respect to the nonlinearity which they approx-
imate. From the process point of view it is the nonlinearity that matters, not the way in which
it is parametrized. However from the point of view of the designer, which parameterization is
used can be very important.

3.3. LOW LEVEL ROUTINES 117

mapping

Purpose

Constructor for the mapping abstract class

Synopsis

m=mapping
m=mapping(name,n in,n out)

Description

m=mapping creates a new general mapping skeleton

m=mapping(name,n in,n out) creates a new general mapping with n in inputs and n out
outputs. The name name is associated to it.

Methods

• check checks the consistency of all the field of a mapping object

• denormalise normalises the model M

• display Display an object of class mapping

• error Computes the squared error of the mapping

• eval computes the value of the mapping for some input

• get gets the value of the attribute of an object

• identify Identify the mapping from data (abstact method)

• jacob inputs computes the jacobian of the model

• jacob params computes the jacobian of the model

• lev marq Performs a Levenbergh Marquardt optimisation of the mapping

• normalise normalises the model M

• set Set object properties

See also

118 CHAPTER 3. API REFERENCE

check

Purpose

checks the consistency of all the field of a mapping object

Synopsis

check(m)

Description

check(m) check the consistency of a mapping object.

Remarks

This function has been provided in order to make the mapping class more robust since it
checks a mapping object for consistency of the data defined in its fields. If a inconsistency
is found, an error message is displayed.

3.3. LOW LEVEL ROUTINES 119

denormalise

Purpose

normalises the model M

Synopsis

m=normalise(m)

Description

m=normalise(m) denormalises the model m

Remarks

This function denormalises a mapping in order to make fit its limits to the original values
before normalisation.

120 CHAPTER 3. API REFERENCE

display

Purpose

Display an object of class mapping

Synopsis

display(m)

Description

display(m) Display the object m of class mapping

See also

3.3. LOW LEVEL ROUTINES 121

error

Purpose

Computes the squared error of the mapping

Synopsis

out=error(m,in,out)

Description

out=error(m,in,out) for each output, the mean squared error is computed, comparing
predictions made on th basis of inputs in to reference outputs out.

See also

122 CHAPTER 3. API REFERENCE

eval

Purpose

computes the value of the mapping for some input

Synopsis

out=eval(m,regressor,j)

Description

out=eval(m,regressor,j) returns the value out of the output(s) j of mapping m given
the input(s) x.

3.3. LOW LEVEL ROUTINES 123

get

Purpose

gets the value of the attribute of an object

Synopsis

d = get(m,label,opt)

Description

d = get(m,label,opt) gets the value of the attribute label associated to the object
m and return it inside d. The following codes are recognised:
name: returns the name of the object
n in: returns the number of inputs of the mapping
n out: returns the number of outputs of the mapping
userData: returns the ’userData’ field
opt: returns the ’opt’ field
date: returns the date of creation of the object
limits: returns the limits of the mapping
optimparams: returns the indices of the parameters to be optimised
numparams: returns the number of parameters to be optimised

See also

set

124 CHAPTER 3. API REFERENCE

identify

Purpose

Identify the mapping from data (abstact method)

Synopsis

m = identify(m,in,out,options)

Description

m = identify(m,in,out,options) performs the identification of the model m using data
inside in and out. Use options in order to specify the identification method and options.

3.3. LOW LEVEL ROUTINES 125

jacob inputs

Purpose

computes the jacobian of the model

Synopsis

jacob inputs(m,x)
jacob inputs(m,x,j)

Description

jacob inputs(m,x) computes for each output the jacobian of the model with respect
to the x (the input of the mapping) at point x.

jacob inputs(m,x,j) computes for output J the jacobian of the model with respect to
the x (the input of the mapping) at point x.

Remarks

The procedure for computing the jacobian depends on the underlying representation of the
model. The result out is an array of size number of outputs * number of inputs containing
the derivatives of the outputs with respect to the inputs.

126 CHAPTER 3. API REFERENCE

jacob params

Purpose

computes the jacobian of the model

Synopsis

jacob params(m,x)
jacob params(m,x,j)

Description

jacob params(m,x) computes for each output the jacobian of the model with respect
to the parameters at input x.

jacob params(m,x,j) computes for output(s) j the jacobian of the model with respect
to the parameters at input regressor.

3.3. LOW LEVEL ROUTINES 127

lev marq

Purpose

Performs a Levenbergh Marquardt optimisation of the mapping

Synopsis

function m = lev marq(m, in, out, cost)

Description

function m = lev marq(m, in, out, cost) Optimises the mapping m with respect to
input/outpu couples ¡CODE¿in/out¡/CODE¿. This method is mainly used internaly. Iden-
tify should be prefered.

See also

identify

128 CHAPTER 3. API REFERENCE

normalise

Purpose

normalises the model M

Synopsis

m=normalise(m)

Description

m=normalise(m) normalises the model m

Remarks

This function normalizes a mapping in order to make fit its limits to the interval [0,1]

3.3. LOW LEVEL ROUTINES 129

set

Purpose

Set object properties

Synopsis

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)
m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)

Description

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value of the
attribute AttrName1, AttrName2, ... associated to the object m.

m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value
of the attribute AttrName1, AttrName2, ... associated to the object m and return the mod-
ified model inside m out. The original model is not modified. The following AttrName are
recognised:
name: sets the name of the object
n in: sets the number of inputs of the model. This sets the saturation level of

the inputs to -Inf, Inf.
n out: sets the number of outputs of the model
userData: sets the ’userData’ field
opt: sets the ’opt’ field
date: sets the date of creation of the object
limits: sets the limits of the domain of definition of the mapping. The value

must be a 2*n in matrix where the upper and lever saturation level are
defined.

optimparams: sets the indices of the parameters to be optimised

See also

get

130 CHAPTER 3. API REFERENCE

3.3.2 Lazy Class

the lazy learning is a local modeling technique that defers processing of the training data until
a query explicitly needs to be answered. This means that all the training data needs to be
stored in memory and accessed when a query is made. Given two variables x ∈ 	m and y ∈ 	,
and considering the mapping f : 	m → 	 which is known only through a set of examples
{(xi, yi)}ni=1, which could be affected by noise, the aim is to find the best possible estimate
ŷ = βq associated the the query q using a model linear in the parameters β. This can be done
by minimizing the following cost expression

C(q) =
n∑

i=1

[(yi − xT
i β)2K(d(xi,q))]

where d(xi,q) is the distance from the query point of the ith example, and K(.) is a weighting
function, or kernel function, which is used to calculate a weight for that data point from the
distance. In this way the linear local model can be specialized to the query by emphasizing
nearby points and discarding more distant ones. In matrix notation the solution of the previous
weighted least squares problem is given by:

β = (XTWTWX)−1XTWTWy

where X is a matrix whose ith row is xT
i , y is a vector whose ith element is yi, W is a diagonal

matrix whose ith diagonal elements is wii =
√

k(d(xi,xq)). Once the local approximation of the
polynomial has been computed the prediction is given by

ŷ = βq

In these systems, no parameter identification process is needed since the answer is produced
upon request of information, and it is calculated starting from the database of examples which
must be retained into memory.
The lazy class is based on the lazy learning toolbox [?, ?], whose functions have been integrated
into an implementation of the mapping class.
The complete documentation of the lazy learning toolbox is joined in the annexes.

3.3. LOW LEVEL ROUTINES 131

lazy

Purpose

Constructor for the lazy abstract class

Synopsis

m=lazy
m=lazy(name,n in,n out)

Description

m=lazy creates a new general lazy skeleton

m=lazy(name,n in,n out) creates a new general lazy with n in inputs and n out outputs.
The name name is associated to it.

Remarks

This class implements the famimo class and allows to describe dynamical systems us-
ing a ’lazy’ representation. It works in a very simple way. The input-output data is stored
in a database. When a prediction of the putput is needed a local model is fitted through
the closest points of the query contained in the database.
The elements that describe the lazy model associated with each output are defined by the
following attributes:
id par: identification parameters
cmb par: model combination parameters

Methods

• check checks the consistency of all the field of a lazy object

• denormalise denormalises the model M

• display Display an object of class lazy

• eval computes the value of the lazy for some input

• get gets the value of the attribute of an object

• identify Identify the lazy model from data

• jacob inputs computes the jacobian of the model

• jacob params computes the jacobian of the model

• normalise normalises the model M

• set Set object properties

See also

mapping

132 CHAPTER 3. API REFERENCE

check

Purpose

checks the consistency of all the field of a lazy object

Synopsis

check(m)

Description

check(m) check the consistency of a lazy object.

Remarks

This function has been provided in order to make the lazy class more robust since it
checks a lazy object for consistency of the data defined in its fields. If a inconsistency is
found, an error message is displayed.

3.3. LOW LEVEL ROUTINES 133

denormalise

Purpose

denormalises the model M

Synopsis

m=denormalise(m)

Description

m=denormalise(m) denormalises the model m

Remarks

This function denormalises a lazy in order to make fit its limits from [0,1] to the orig-
inal values, before normalisation.

134 CHAPTER 3. API REFERENCE

display

Purpose

Display an object of class lazy

Synopsis

display(m)

Description

display(m) Display the object m of class lazy

3.3. LOW LEVEL ROUTINES 135

eval

Purpose

computes the value of the lazy for some input

Synopsis

out=eval(m,regressor)
out=eval(m,regressor,j)

Description

out=eval(m,regressor) returns the value out of the output(s) of lazy m given the in-
put(s) x.

out=eval(m,regressor,j) returns the value out of the output(s) j of lazy m given the
input(s) x.

Remarks

This function returns the output of system as computated by the model, given a regressor.

136 CHAPTER 3. API REFERENCE

get

Purpose

gets the value of the attribute of an object

Synopsis

d = get(m,label,opt)

Description

d = get(m,label,opt) gets the value of the attribute label associated to the object
m and return it inside d. The following codes are recognised:
name: returns the name of the object
n in: returns the number of inputs of the lazy
n out: returns the number of outputs of the lazy
userData: returns the ’userData’ field
opt: returns the ’opt’ field
date: returns the date of creation of the object
limits: returns the limits of the lazy
optimparams: returns the indices of the parameters to be optimised
numparams: returns the number of parameters to be optimised
id par: returns the identification paramenters
cmb par: returns the combination paramenters of the models
examples x: the database of the input examples
examples y: the database of the output examples

See also

set

3.3. LOW LEVEL ROUTINES 137

identify

Purpose

Identify the lazy model from data

Synopsis

m = identify(m,in,out,options)

Description

m = identify(m,in,out,options) performs the identification of the model m using data
inside in and out. Define the structure options in order to specify the identification
method and options.
Accepted fields are:
id par: identification parameters
cmb par: model combination parameters

138 CHAPTER 3. API REFERENCE

jacob inputs

Purpose

computes the jacobian of the model

Synopsis

jacob inputs(m,x)
jacob inputs(m,x,j)

Description

jacob inputs(m,x) computes for each output the jacobian of the model with respect
to the x (the input of the lazy) at point x.

jacob inputs(m,x,j) computes for output J the jacobian of the model with respect to
the x (the input of the lazy) at point x.

Remarks

The procedure for computing the jacobian depends on the underlying representation of the
model. The result out is an array of size number of outputs * number of inputs containing
the derivatives of the outputs with respect to the inputs.

3.3. LOW LEVEL ROUTINES 139

jacob params

Purpose

computes the jacobian of the model

Synopsis

jacob params(m,x)
jacob params(m,x,j)

Description

jacob params(m,x) computes for each output the jacobian of the model with respect
to the parameters at input x. It returns an empty array.

jacob params(m,x,j) computes for output(s) j the jacobian of the model with respect
to the parameters at input regressor. It returns an empty array.

Remarks

This function does not have any meaning for lazy systems, and it is provided only for
compatibility reasons.

140 CHAPTER 3. API REFERENCE

normalise

Purpose

normalises the model M

Synopsis

m=normalise(m)

Description

m=normalise(m) normalises the model m

Remarks

This function normalizes a lazy in order to make fit its limits to the interval [0,1]

3.3. LOW LEVEL ROUTINES 141

set

Purpose

Set object properties

Synopsis

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)
m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...)

Description

set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value of the
attribute AttrName1, AttrName2, ... associated to the object m.

m out = set(m,’AttrName1’,AttrValue1,’AttrName2’,AttrValue2,...) sets the value
of the attribute AttrName1, AttrName2, ... associated to the object m and return the mod-
ified model inside m out. The original model is not modified. The following AttrName
inherided from the mapping class are recognised:
name: sets the name of the object
n in: sets the number of inputs of the model. This sets the saturation level of

the inputs to -Inf, Inf.
n out: sets the number of outputs of the model
userData: sets the ’userData’ field
opt: sets the ’opt’ field
date: sets the date of creation of the object
limits: sets the limits of the domain of definition of the lazy. The value must be

a 2*n in matrix where the upper and lever saturation level are defined.
optimparams: sets the indices of the parameters to be optimised

The following codes specific to the lazy class are recognised:
id par: identification parameters
cmb par: model combination parameters

The identification parameter can assume the following forms:

id par = [idmidMvalM] (3.2)

where [idmX,idMX] is the range in which the best number of neighbors is searched when
identifying the local model of degree X and where valMX is the maximum number of
neighbors used in validation for the model of degree X. This means that the model of degree
X identified with k neighbors, is validated un the first v neighbors, where v=min(k,valMX).

id par = [idmidM] (3.3)

where idmX and idMX have the same role they have in point 1, and valMX is by default
set to idMX: each model is validated on all the neighbors used in identification.

id par = [c] (3.4)

142 CHAPTER 3. API REFERENCE

Here idmX and idMX are obtained according to the following fotmulas:

idmX = 3 ∗ noparX ∗ cXidMX = 5 ∗ noparX ∗ cX (3.5)

where no parX is the number of parameter of the model of degree X. Recommended choice:
cX = 1. As far as the valMX are concerned, they get the default value as in point 2. The
default value for cmb par is 1 as it will be clear from what follows. If given, cmb par can
assume the following to forms:

cmb par = [cmb] (3.6)

where cmbX is the number of models of degree X that will be included in the local com-
bination. Each local model will be therfore a combination of ”the best cmb0 models of
degree 0”, ”the best cmb1 models of degree 1”, and ”the best cmb2 models of degree 1”
identified as specified by id par.

cmbpar = [cmb] (3.7)

where cmb is the number of models that will be combined, disregarding any constraint
on the degree of the models that will be considered. Each local model will be therfore a
combination of ”the best cmb models”, identified as specified by id par.

3.3. LOW LEVEL ROUTINES 143

3.3.3 Taksug Class

the Takagi-Sugeno fuzzy systems are a different type of fuzzy systems which use rules of the
form:

R(l) : IF x1 IS A
(l)
1 AND . . . AND xn IS A

(l)
n THEN y = h(l)(x)

where xi ∈ 	 are the inputs (antecedent) variables, and y ∈ 	 is the output (consequent). A
(l)
i

are antecedent fuzzy sets of the lth rule, defined by a membership function

µ
A

(l)
i

(xi) : 	 → [0, 1]

In many cases the output function h(l)(x) is a linear combination of the input variables plus a
constant term.

h(l)(x) = a
(l)
0 + a

(l)
1 x1 + . . . + a(l)

n xn

In the special case when all the l1 . . . ln = 0, and therefore the consequents are constant functions,
this becomes a special case of the Mandami system with the consequent fuzzy sets being fuzzy
singletons. The system output is a weighted average of the individual rule outputs, similar to
the fuzzy-mean defuzzification formula:

y =
M∑
l=1

µA(l)(x)∑M
k=1 µA(k)(x)

h(l)(x)

where the weights µA(l)(x) are computed according to

µA(l)(x) =
n∏

i=1

µ
A

(l)
i

(xi)

This approach allows to model a system by means of the decomposition of a nonlinear system
into a collection of local linear models. It allows a more accurate representation of systems,
since the rules are usually simple linear subsystems, and not constant values like in the case of
the Mamdani fuzzy systems. Since this approach imposes to structure the problem in a series of
local models, Takagi-Sugeno models can be more easily constructed from numerical data than
Mamdani models, which are essentially structure free.

The Features of this class are similar to the ones defined in the mamdani class. It is possible
to add and delete rules, and to define their shape. Since these type of models are usually con-
structed from numerical data several identification procedures are available for performing the
parameter identification procedure.

144 CHAPTER 3. API REFERENCE

taksug

Purpose

class for implementing the taksug fuzzy functions

Synopsis

m=taksug(varargin)
m=taksug(taksug obj)
m=taksug(structure)
m=taksug(name, n inputs, n outputs)

Description

m=taksug(varargin) returns an empty taksug object.

m=taksug(taksug obj) returns a copy of the taksug obj object.

m=taksug(structure) initializes a new taksug object with the appropriate fields set ac-
cording to the values defined in the fields of structure.

m=taksug(name, n inputs, n outputs) initializes a new taksug object called name, with
number of inputs n inputs and number of outputs n outputs.

Remarks

The taksug class is a child of the mapping class and allows the definition of a static
system using a fuzzy rule based Takagi-Sugeno (TS) representation. The class inherits all
the fields of the mapping class and defined a series of new attibutes required for imple-
menting the TS representation of a model. At the top level the following fields are defined:
n rules: defines the number of fuzzy rules of the model
model code: defines the structure of the fuzzy rules
centers: position of the center of each rule
ivariances: inverse of the projected covariance matrix of the cluster associated to

each rule. In other words, it is the quadratic matrix defining the local
metric (or the shape) of the rule

linears: hyperplane associated to each rule (consequence of the rule)
m: index of the fuzzyness of the model
mfs: description of the fuzzy sets while they are defined along each dimension.
rls: description of the rules base.

Methods

• add rules adds specified number of rules

• add sets Add fuzzy sets along one or more dimensions of the input space

• check checks the consistency of all the field of a taksug object

• denormalize denormalizes the model

• display Display an object of class taksug

3.3. LOW LEVEL ROUTINES 145

• drawcontrols Draw controls which allow to control the plot behaviour

• eval computes the value of the model

• fit linears identifies the consequent part of a fuzzy model from data

• get gets the value of the attribute of an object

• identify identifies a fuzzy model from data

• interp model Computes a local fuzzy combination of the consequents of the rules

• jacob inputs computes the jacobian of the model

• jacob params computes the jacobian of the model

• lev marq Performs a Levenbergh Marquardt optimisation of the mapping

• membership returns the membership of a rule

• normalise normalises the model M

• plot performs a plot of the a taksug model

• plot performs a plot of the a taksug model

• rem rules remove the specified rules from the taksug object

• set set object properties

• sets grid Remove every fuzzy sets and replace them by evenly spaced ones

146 CHAPTER 3. API REFERENCE

add rules

Purpose

adds specified number of rules

Synopsis

add rules(m,n)
add rules(m,n,model code)

Description

add rules(m,n) add n rules to the model m. When rules are added the optimparams
property of the model is set to contain the parameters of the newly added rules. This
allow to optimise by default every parameters of a TS system.

add rules(m,n,model code) add n rules to the model m, model code is a cell array x y
z. x is the type of TS model (’crossproduct’ or ’projected’). For ’crossproduct’ models, y
is the type of the membership functions (’gaussian’, ’inversedist’:

1

distanceofmahalanobis
1

m−1

(3.8)

and z is the type of the consequents (’linear’). For ’projected’ systems, y specify the way
rules are initially positioned (’standard’: no positionment, ’rulegrid’: rules evenly disposed
on a grid defined by the fuzzy sets) and z is the type of the consequents (’linear’). Only
rules of the same type can co-exist in a TS model.

Remarks

This function is used to specify the number and shape of the rules associated to the
TS model.

3.3. LOW LEVEL ROUTINES 147

add sets

Purpose

Add fuzzy sets along one or more dimensions of the input space

Synopsis

m = add sets(m,i,n,t)

Description

m = add sets(m,i,n,t) adds n sets to the dimension i of the Takagi Sugeno Function
m. The sets are of type t Accepted values for t are ’constant, ’trapezoidal’,’gaussian’ and
’s-shaped’. This method is used to define the fuzzy sets for the ’projected’ type of fuzzy
model.

See also

add rules

148 CHAPTER 3. API REFERENCE

check

Purpose

checks the consistency of all the field of a taksug object

Synopsis

check(m)

Description

check(m) check the consistency of a taksug object.

Remarks

This function has been provided in order to make the taksug class more robust since
it checks a taksug object for consistency of the data defined in its fields. If a inconsistency
is found, an error message is displayed.

3.3. LOW LEVEL ROUTINES 149

denormalize

Purpose

denormalizes the model

Synopsis

m=denomalise(m)

Description

m=denomalise(m) denormalzes the model m.

Remarks

This function can be applied to denormalize a model that has been previously normalised
with the function normalize restoring the original shape of the local representation of the
model.

See also

normalize

150 CHAPTER 3. API REFERENCE

display

Purpose

Display an object of class taksug

Synopsis

display(m)

Description

display(m) Display the object m of class taksug

See also

3.3. LOW LEVEL ROUTINES 151

drawcontrols

Purpose

Draw controls which allow to control the plot behaviour

Synopsis

drawcontrols(m,f,a,bounds)

Description

drawcontrols(m,f,a,bounds) binds a series of controls drawed inside bounds, to the
figure f and the axes a.

See also

plot

152 CHAPTER 3. API REFERENCE

eval

Purpose

computes the value of the model

Synopsis

out=eval(m,x,j)

Description

out=eval(m,x,j) returns the value out for the output(s) j of model m given the input x.

Remarks

This function returns the output of system as computated by the model, given a regressor.

3.3. LOW LEVEL ROUTINES 153

fit linears

Purpose

identifies the consequent part of a fuzzy model from data

Synopsis

m=fit linears(m,in,out,type)

Description

m=fit linears(m,in,out,type) identify model m on the basis of the data inside in
and out.type is used to specify the type of the fit. 0 is the defaults and leads to a classical
LMS fit. 1 leads to a local fit.

154 CHAPTER 3. API REFERENCE

get

Purpose

gets the value of the attribute of an object

Synopsis

d = get(m,label)

Description

d = get(m,label) gets the value of the attribute label associated to the object m and
return it inside d. The following codes are recognised:
name: returns the name of the object
n in: returns the number of inputs of the mapping
n out: returns the number of outputs of the mapping
userData: returns the ’userData’ field
opt: returns the ’opt’ field
date: returns the date of creation of the object
limits: returns the limits of the mapping
optimparams: returns the indices of the parameters to be optimised
numparams: returns the number of parameters to be optimised
n rules: returns the number of rules associated to the taksug model
model code: returns the code of the model associated to the taksug model
m: returns the fuzziness associated to the taksug model
centers: returns the positions of the centers of the rules associated to the taksug

model
ivariances: returns the invariances of the rules associated to the taksug model
linears: returns the linears of associated to the taksug model
rls: returns the fuzzy sets associated to the taksug model
mfs: returns the definition of the rules of the taksug model
params: returns every parameters to be optimised in the shape of a vector

See also

set

3.3. LOW LEVEL ROUTINES 155

identify

Purpose

identifies a fuzzy model from data

Synopsis

m=identify(m,in,out,options)

Description

m=identify(m,in,out,options) identify model m on the basis of the data inside in
and out using method specified in options. The accepted fields for options are:
method: identification method(see below).
n rules: number of rules.
min n rules: min. nb. of rules (incremental methods only)
max n rules: max. nb. of rules (incremental methods only)
fuzzyness: fuzzyness of the model (usually greater than 1)
tolerance: minimal improvement for recursive techniques before the algorithm

stops.
seed: seed for random generator
lin fit: type of linear fitting: 0: normal, 1: local
rule type: rule type code (see add rules for more info)

Methods of identification are:
cluslms: GK clustering followed by a LMS fit
fmclust: Robert Babuska’s identification method
incrsie: Incremental identification method (Siemens)
tsgklmxv: incremental method developped in IRIDIA
cluslev: GK clust. init. and Lev.-Marq. optimisation
randlm: random init. and Lev.-Marq. optimisation

156 CHAPTER 3. API REFERENCE

interp model

Purpose

Computes a local fuzzy combination of the consequents of the rules

Synopsis

l=interp model(m,x,j)

Description

l=interp model(m,x,j) computes for taksug model m, a fuzzy combination of the con-
sequents of the rules at point x. l is equal to a linear combination of the parameters of
the consequents for each rule. The coefficient of the linar combination are equal to the
membership of x to the different rules.

See also

also jacob params

3.3. LOW LEVEL ROUTINES 157

jacob inputs

Purpose

computes the jacobian of the model

Synopsis

jacob inputs(m,x)
jacob inputs(m,x,j)

Description

jacob inputs(m,x) computes for each output the jacobian of the model with respect
to the x (the input of the linear) at point x.

jacob inputs(m,x,j) computes for output J the jacobian of the model with respect to
the x (the input of the linear) at point x.

Remarks

The procedure for computing the jacobian depends on the underlying representation of the
model. The result out is an array of size number of outputs * number of inputs containing
the derivatives of the outputs with respect to the inputs.

158 CHAPTER 3. API REFERENCE

jacob params

Purpose

computes the jacobian of the model

Synopsis

jacob params(m,x)
jacob params(m,x,j)

Description

jacob params(m,x) computes for each output the jacobian of the model with respect
to the parameters at input x.

jacob params(m,x,j) computes for output(s) j the jacobian of the model with respect
to the parameters at input x.

3.3. LOW LEVEL ROUTINES 159

lev marq

Purpose

Performs a Levenbergh Marquardt optimisation of the mapping

Synopsis

function m = lev marq(m, in, out, cost)

Description

function m = lev marq(m, in, out, cost) Optimises the mapping m with respect to
input/outpu couples ¡CODE¿in/out¡/CODE¿. This method is mainly used internaly. Iden-
tify should be prefered.

See also

identify

160 CHAPTER 3. API REFERENCE

membership

Purpose

returns the membership of a rule

Synopsis

out=membership(m,x,j)

Description

out=membership(m,x,j) returns the membership of the rules for the model m.

3.3. LOW LEVEL ROUTINES 161

normalise

Purpose

normalises the model M

Synopsis

m=normalise(m)

Description

m=normalise(m) normalises the model m

162 CHAPTER 3. API REFERENCE

plot

Purpose

performs a plot of the a taksug model

Synopsis

f=plot(m)
f=plot(m,options)

Description

f=plot(m) opens a new figure if needed and plots the model m. A complete user in-
terface is set to allow advanced visualisation options to be selected.

f=plot(m,options) opens a new figure if needed and plots the model m. options are
passed to the drawing engine.

3.3. LOW LEVEL ROUTINES 163

plot

Purpose

performs a plot of the a taksug model

Synopsis

f=plot(m)
f=plot(m,data)
f=plot(m,data,options)

Description

f=plot(m) opens a new figure if needed and plots the model m. A complete user in-
terface is set to allow advanced visualisation options to be selected.

f=plot(m,data) opens a new figure if needed and plots the model m. The data specified
in data are plotted on the same graph in order to visually X validate the model.

f=plot(m,data,options) opens a new figure if needed and plots the model m. The data
specified in data are plotted on the same graph in order to visually X validate the model.
options are passed to the drawing engine.

164 CHAPTER 3. API REFERENCE

rem rules

Purpose

remove the specified rules from the taksug object

Synopsis

m=rem rules(m)
m=rem rules(m,n)

Description

m=rem rules(m) remove all rules from model m.

m=rem rules(m,n) remove rules number n from model m.

See also

3.3. LOW LEVEL ROUTINES 165

set

Purpose

set object properties

Synopsis

m=set(m,label1,value1,label2,value2,...)

Description

m=set(m,label1,value1,label2,value2,...) sets the value value of the attribute
label associated to the object m. The following codes are recognised:
name: sets the name of the object
n in: sets the number of inputs of the model. This sets the saturation level of

the inputs to -Inf, Inf.
n out: sets the number of outputs of the model
userData: sets the ’userData’ field
opt: sets the ’opt’ field
date: sets the date of creation of the object
limits: sets the limits of the mapping
optimparams: sets the indices of the parameters to be optimised
model code: sets the type of rules associated to the taksug model
m: sets the fuzziness associated to the taksug model
centers: sets the positions of the centers of the rules associated to the taksug

model
center: sets the positions of one center of the rules associated to the taksug

model. value is of the form number value.
ivariances: sets the invariances of the rules associated to the taksug model
ivariance: sets the positions of one ivariance of the rules associated to the taksug

model. value is of the form number value.
linears: sets the linears of associated to the taksug model
linear: sets the positions of one linear of the rules associated to the taksug

model. value is of the form number value.
rls: sets the fuzzy sets associated to the taksug model
rl: sets one fuzzy set associated to the taksug model
mfs: sets the definition of the rules of the taksug model
mf: sets the definition of one rule of the taksug model
params: sets every parameters to be optimised providing a vector
optimselect: basically achieves the same result as optimparams but lets the user per-

form a grouped selection of the parameters (all the consequents param-
eters, all the centers,...), value is 4 bits binary number dcba. a is set for
selecting the centers, b for the ivariances, c for the consequents except
the offsets, d for the offsets

Remarks

General purpose function for setting the values of the fields of a taksug object. For set-
ting the rules, use the add rules and rem rules function. This method extends the ’set’
method defined in the mpping class.

166 CHAPTER 3. API REFERENCE

See also

get, add rules, rem rules

3.3. LOW LEVEL ROUTINES 167

sets grid

Purpose

Remove every fuzzy sets and replace them by evenly spaced ones

Synopsis

m = sets grid(m, d1, d2, d3, d4..., t)

Description

m = sets grid(m, d1, d2, d3, d4..., t) places d1 sets of type t along the dimen-
sion 1, d2 sets along the dimension 2, etc... The position of the sets is computed on the
basis of the limits attribute. The previously defined rules and sets are removed.

See also

add setss

168 CHAPTER 3. API REFERENCE

3.3.4 Mamdani Class

Mamdani fuzzy systems, also known as linguistics fuzzy systems, are composed by four differ-
ent elements: a fuzzifier, a rule base, an inference engine, and a defuzzifier. The inputs are
transformed in fuzzy numbers by the fuzzifier, which converts numeric values x� into fuzzy sets
µA(x). Usually singleton fuzzifiers are the predominant ones, since their use simplifies the com-
putations in the fuzzy system considerably. This means that the inputs of the fuzzy system
are real numbers and not fuzzy sets. The fuzzy rule base consists of fuzzy IF-THEN rules and
membership functions, characterizing the fuzzy set. More precisely a fuzzy rule base, R, is a set
of rules R(l), l = 1, 2, . . . , K of the form:

R(l) : IF x1 IS A
(l)
1 AND . . . AND xn IS A

(l)
n THEN y IS B(l)

where xi ∈ 	 are the input (antecedent) variables, and y ∈ Y ∈ 	 is the output (conse-
quent). A

(l)
i and B(l) are linguistic terms (labels) defined by fuzzy sets µ

A
(l)
i

(xi) : 	 → [0, 1] and

µB(l)(y) : Y → [0, 1]. The inference engine takes the input of the fuzzy system, and uses the
rule based systems to calculate the output of the system. Each rule is evaluated and the output
suggested by the rule is inferred using fuzzy operators. Then the predictions of each rules are
aggregated together in a fuzzy set. The defuzzifier has the task of taking transforming this fuzzy
set into a numeric value which is the output of the system. These type of fuzzy systems are well
suited for encoding imprecise knowledge expressed in the form of IF-THEN rules. These rules
are easily understood by the user since they do not imply any mathematical representation. The
type of interpolation between the rules depends on their shape and and the choice of the fuzzy
logic operators and defuzzification procedures [?].

The class defines methods for adding, and removing rules. It is possible to choose the shape
of the membership functions by composition of simpler shapes. In this way it is possible to se-
lect gaussian, sigmoidal, triangular, and several variations of rectangular membership functions.
The inference engine uses for calculating the contribution of each rule. Freedom about the
defuzzification method is also granted. Center of gravity, center average, and maximum defuzzi-
fiers are implemented in this class.

3.3. LOW LEVEL ROUTINES 169

mamdani

Purpose

build a mamdami object

Synopsis

m=mamdani(varargin)

Description

m=mamdani(varargin)

Methods

• add rules add specified number of rules

• add sets Add fuzzy sets along one or more dimension of the space

• check checks the consistency of all the field of a mamdani object

• denormalize denormalises the model

• display Display an object of class mamdani

• eval computes the value of the model

• get gets the value of the attribute of an object

• identify identifies a fuzzy model from data

• jacob inputs computes the jacobian of the model

• jacob params computes the jacobian of the model

• membership Compute the degree of fullfilment of the rules of a mamdani function

• normalise normalises the model M

• plot performs a plot of the a mamdani model

• rem rules remove the specified rules from the mamdani object

• rem sets remove the specified sets from the mamdani object

• rules parser parses rules in order to populate the rules base of a mamdani model

• set set object properties

• sets grid Remove every fuzzy sets and replace them by evenly spaced ones

See also

170 CHAPTER 3. API REFERENCE

add rules

Purpose

add specified number of rules

Synopsis

add rules(m,n)
add rules(m,n,model code)
add rules(m,n,model code,mode)

Description

add rules(m,n) add n rules to the model m.

add rules(m,n,model code) add n rules to the model m, model code is a cell array of
two elements x y where x is the T-norm used (only ’product’ is currently implemented)
and y is defuzzification method (’meancentroid’).

add rules(m,n,model code,mode) mode can take the value ’standard’ or ’rulegrid’. In
lhe latter case, the position of the rules is initialised in order to fill the space according to
the position of the fuzzy sets along the the different dimensions.

Remarks

This function is used to specify the number and shape of the rules associated to the
TS model.

3.3. LOW LEVEL ROUTINES 171

add sets

Purpose

Add fuzzy sets along one or more dimension of the space

Synopsis

m = add sets(m,i,n,t)
m = add sets(m,i,n,t)

Description

m = add sets(m,i,n,t) adds n sets to the dimension i of the Mamdani Function m.
The sets are of type t Accepted values for t are ’constant, ’trapezoidal’,’gaussian’ and
’s-shaped’.

m = add sets(m,i,n,t) where n where n is a cell array of linguistic values attaches the
corresponding sets to the dimension ¡CODE¿i¡CODE¿.

See also

172 CHAPTER 3. API REFERENCE

check

Purpose

checks the consistency of all the field of a mamdani object

Synopsis

check(m)

Description

check(m) check the consistency of a mamdani object.

Remarks

This function has been provided in order to make the mamdani class more robust since it
checks a mamdani object for consistency of the data defined in its fields. If a inconsistency
is found, an error message is displayed.

3.3. LOW LEVEL ROUTINES 173

denormalize

Purpose

denormalises the model

Synopsis

m=denomalise(m)

Description

m=denomalise(m) denormalzes the model m.

Remarks

This function can be applied to denormalise a model that has been previously normalised
with the function normalise restoring the original shape of the local representation of the
model.

See also

normalize

174 CHAPTER 3. API REFERENCE

display

Purpose

Display an object of class mamdani

Synopsis

display(m)

Description

display(m) Display the object m of class mamdani

See also

3.3. LOW LEVEL ROUTINES 175

eval

Purpose

computes the value of the model

Synopsis

out=eval(m,x,j)

Description

out=eval(m,x,j) returns the value out for the output(s) j of model m given the input x.

Remarks

This function returns the output of system as computated by the model, given a regressor.

176 CHAPTER 3. API REFERENCE

get

Purpose

gets the value of the attribute of an object

Synopsis

d = get(m,label)

Description

d = get(m,label) gets the value of the attribute label associated to the object m and
return it inside d. The following codes are recognised:
name: returns the name of the object
n in: returns the number of inputs of the mapping
n out: returns the number of outputs of the mapping
userData: returns the ’userData’ field
opt: returns the ’opt’ field
date: returns the date of creation of the object
limits: returns the limits of the mapping
optimparams: returns the indices of the parameters to be optimised
numparams: returns the number of parameters to be optimised
n rules: returns the number of rules associated to the taksug model
model code: returns the code of the model associated to the
rls: returns the fuzzy sets associated to the taksug model
mfs: returns the definition of the rules of the taksug model
params: returns every parameters to be optimised in the shape of a vector

See also

set

3.3. LOW LEVEL ROUTINES 177

identify

Purpose

identifies a fuzzy model from data

Synopsis

m=identify(m,in,out,options)

Description

m=identify(m,in,out,options) identify model m on the basis of the data inside in
and out using method specified in options.

178 CHAPTER 3. API REFERENCE

jacob inputs

Purpose

computes the jacobian of the model

Synopsis

jacob inputs(m,x)
jacob inputs(m,x,j)

Description

jacob inputs(m,x) computes for each output the jacobian of the model with respect
to the x (the input of the linear) at point x.

jacob inputs(m,x,j) computes for output J the jacobian of the model with respect to
the x (the input of the linear) at point x.

Remarks

The procedure for computing the jacobian depends on the underlying representation of the
model. The result out is an array of size number of outputs * number of inputs containing
the derivatives of the outputs with respect to the inputs.

3.3. LOW LEVEL ROUTINES 179

jacob params

Purpose

computes the jacobian of the model

Synopsis

jacob params(m,x)
jacob params(m,x,j)

Description

jacob params(m,x) computes for each output the jacobian of the model with respect
to the parameters at input x.

jacob params(m,x,j) computes for output(s) j the jacobian of the model with respect
to the parameters at input x.

180 CHAPTER 3. API REFERENCE

membership

Purpose

Compute the degree of fullfilment of the rules of a mamdani function

Synopsis

out = membership(m,x)

Description

out = membership(m,x)

See also

3.3. LOW LEVEL ROUTINES 181

normalise

Purpose

normalises the model M

Synopsis

m=normalise(m)

Description

m=normalise(m) normalises the model m

182 CHAPTER 3. API REFERENCE

plot

Purpose

performs a plot of the a mamdani model

Synopsis

f=plot(m)
f=plot(m,options)

Description

f=plot(m) opens a new figure if needed and plots the model m. A complete user in-
terface is set to allow advanced visualisation options to be selected.

f=plot(m,options) opens a new figure if needed and plots the model m. options are
passed to the drawing engine.

3.3. LOW LEVEL ROUTINES 183

rem rules

Purpose

remove the specified rules from the mamdani object

Synopsis

m=rem rules(m)
m=rem rules(m,n)

Description

m=rem rules(m) remove all rules from model m.

m=rem rules(m,n) remove rules number n from model m.

See also

184 CHAPTER 3. API REFERENCE

rem sets

Purpose

remove the specified sets from the mamdani object

Synopsis

m=rem sets(m,i)
m=rem sets(m,i,n)

Description

m=rem sets(m,i) remove all sets from output i of model m.

m=rem sets(m,i,n) remove sets number n from output i of model m.

See also

3.3. LOW LEVEL ROUTINES 185

rules parser

Purpose

parses rules in order to populate the rules base of a mamdani model

Synopsis

m=rules parser(m,rules)

Description

m=rules parser(m,rules)

See also

186 CHAPTER 3. API REFERENCE

set

Purpose

set object properties

Synopsis

m=set(m,label1,value1,label2,value2,...)

Description

m=set(m,label1,value1,label2,value2,...) sets the value value of the attribute
label associated to the object m. The following codes are recognised:
name: sets the name of the object
n in: sets the number of inputs of the model. This sets the saturation level of

the inputs to -Inf, Inf.
n out: sets the number of outputs of the model
userData: sets the ’userData’ field
opt: sets the ’opt’ field
date: sets the date of creation of the object
limits: sets the limits of the mapping
optimparams: sets the indices of the parameters to be optimised
model code: sets the type of rules associated to the mapping model
rls: sets the fuzzy sets associated to the mapping model
rl: sets one fuzzy set associated to the mapping model
mfs: sets the definition of the rules of the mapping model
mf: sets the definition of one rule of the mapping model
ling: sets the linguistical representation of the sets (the name of the sets)
varnames: sets the name of the variables
mftype: sets the type of a set. value is 3 elements cell array a b c where a is

the number of the input, b is the index of the set and c is the type
(’constant’, ’trapezoidal’, ’s-shaped’ or ’gaussian’)

params: sets every parameters to be optimised providing a vector

Remarks

General pupose function for setting the values of the fields of a mamdani object. For
setting the rules, use the add rules, rem rules and add sets function. This method
extends the ’set’ method defined in the mapping class.

See also

get, add dynamics, add data, add rules

3.3. LOW LEVEL ROUTINES 187

sets grid

Purpose

Remove every fuzzy sets and replace them by evenly spaced ones

Synopsis

m = sets grid(m, d1, d2, d3, d4..., t)

Description

m = sets grid(m, d1, d2, d3, d4..., t) places d1 sets of type t along the dimen-
sion 1, d2 sets along the dimension 2, etc... The position of the sets is computed on the
basis of the limits attribute. The previously defined rules and sets are removed.

See also

add setss

Chapter 4

The graphical User Interface

The Famimo toolbox has been equipped with a graphical user interface, allowing a user friendly
approach for the development of MIMO control systems. A series of windows and buttons guide
the user during the specification of the characteristics of the model, granting the possibility of
selecting different approaches for the solution of the control system.

In order to start the user interface the user must type the command setup at the MatlabTMprompt
from the directory where the toolbox has been installed, then the command fmgui starts the
graphical user interface. Therefore typing

>> setup
>> fmgui

the window reported in figure 4.1 will appear on the screen.
It is possible to identify two sets of buttons of the left, the action buttons on the uppermost

Figure 4.1: The initial appearance of the Famimo toolbox GUI.

part, and the model buttons on the lower part. The model buttons allow the user to choose
among the different models supported by the toolbox. At present the following models are
supported:

• Tagaki-Sugeno models

188

189

Figure 4.2: The Dynamics data screenshot of the Famimo toolbox GUI.

• lazy models

Once the model has been selected the action buttons guide the user in the process of defining the
model, identifying it, designing the controller and verifying its stability. The data is inserted in
the appropriate fields displayed in the top frame on the right, while the bottom frame provides
an up to date description of the model.

Model data
Once the Data button as been selected (default condition when the system is started), the
Famimo Toolbox GUI appears as in figure 4.1, and it is possible to proceed in the definition
of the input and output variables of the model. It is necessary to specify the name of the file
where the model data is saved and the name of the input and the output variables; If the data
is already present in the memory of MatlabTMit is possible to specify their names leaving out
the Data File field. The Apply button updates the model with inputs from the user. Pushing
the Load Config. button it is possible to load in memory configurations saved in advance.

Dynamics data
When the Dynamics button has been selected the Famimo Toolbox will appear as in figure 4.2.
The user is prompted to insert the matrix of the inputs of the system, the outputs and the
delays. If no information is provided the system implements a static mapping. When all the
required information has been inserted it is possible to push the Apply button for updating the
model.

Identification
When the Identification button has been selected the use interface changes as in figure 4.3. At
this point the user is allowed to choose the method for identifying the model (the range of selec-
tions depends from the model which has been chosen), inserting the required parameters. The
Apply button starts the model identification procedure.

Visualisation
Once the model has been identified it is possible to appreciate the results of the identification

190 CHAPTER 4. THE GRAPHICAL USER INTERFACE

Figure 4.3: The Identification screenshot of the Famimo toolbox GUI.

Figure 4.4: The Visualization screenshot of the Famimo toolbox GUI.

process by selecting the Visualisation button which changes the window as depicted in figure 4.4.
The user has the option of validating the results of the identification with a data set different
from the one used in the identification phase. Once the parameters have been set it is possible
to press the Apply button.

A plot of the model appears in the visualisation window (figure 4.5) the controls at the
bottom of the the window let the user (from left to right):

• Choose between a mapping representation (the model is plotted into the regressors space)
and a dynamical representation (a simulation of the model is plotted through the time).

191

Figure 4.5: The visualisation window.

• Choose what is being represented (Data Sli(ce) lets the user choose between seeing all the
data or only a part of them when the model is represented as a projection.

• Choose the projection plan (if needed)

• Choose between a two and a three dimensional visualisation.

• Specify the axes limits, rotate and zoom the model.

In this way it is possible to select the features of the visualization according to the needs of the
user.

Control

Not yet implemented.

Stability

Not yet implemented.

Contents

1 Introduction 2
1.1 General information . 2
1.2 Installation . 2
1.3 Bug report . 2
1.4 Help needed . 2

2 Learning Guide 3
2.1 Building things . 3
2.2 The mapping class and its subclasses . 7

2.2.1 The linear class . 8
2.2.2 The lazy class . 9
2.2.3 The taksug class . 11
2.2.4 The mamdani class . 14

2.3 Handling data with the dataset class . 15
2.4 NLMIMO identification in a nutshell . 15

3 API Reference 17
3.1 Data Manipulation Routines . 17
3.2 High Level Routines . 69

3.2.1 System Abstract Class . 69
3.2.2 Internal Class . 85
3.2.3 External Class . 102

3.3 Low Level Routines . 116
3.3.1 Mapping Abstract Class . 116
3.3.2 Lazy Class . 130
3.3.3 Taksug Class . 143
3.3.4 Mamdani Class . 168

4 The graphical User Interface 188

192

