
LARS Library: Least Angle Regression Stagewise Library

Frank Vanden Berghen

IRIDIA, Université Libre de Bruxelles

fvandenb@iridia.ulb.ac.be

November 22, 2005

Let’s assume that we want to perform a simple identification task. Let’s assume that you have
a set of n + 1 measures (x(1), x(2), . . . , x(n), y). We want to find a function (or a model) that
predicts the measure y in function of the measures x(j), j = 1, . . . , n. The vector x ∈ <n =
(x(1), . . . , x(n))

t has several names:

• x is the regressor vector.

• x is the input.

• x is the vector of independent variables.

y has several names:

• y is the target.

• y is the output.

• (y is the dependant variable).

The pair (x, y) has several names:

• (x, y) is an input↔output pair.

• (x, y) is a sample.

We want to find f such that y = f(x). Let’s also assume that you know that f(x) belongs to
the family of linear models. I.e. f(x) =

∑n
j=1 x(j)βj + p =< x, β > +p where < ·, · > is the dot

product of two vectors and p is the constant term. You can also write f(x) = xtβ + p where
β ∈ <n and p are describing f(x). We will now assume, without loss of generality, that p = 0.
We will see later how to compte p if this is not the case. β is the model that we want to find.
Let’s now assume that we have many input↔output pairs. i.e. we have

(x(1), . . . , x(n))(1) = X(1) ↔ y1 (1)

X(2) ↔ y2

...
...

X(m) ↔ ym

We want to compute β such that ∀i X t
(i)β = yi. Using matrix notation, β is the solution of:

Xβ = y (2)

1

2

where X ∈ <m×n is a matrix containing on each line a different regressor and y ∈ <m contains
all the targets. The columns of X contain the independent variables or, in short, the variables. If
m ≤ n, we can compute β using a simple Gauss-Jordan elimination. That’s not very interesting.
We are usually more interested in the case where m >> n: when the linear system Xβ = y

is over-determined. We want to find β∗ such that the Total Prediction Error (TPError) is
minimum:

TPError(β∗) = min
β

(TPError(β)) (3)

If we define the total prediction error TPError as

Sum of Squared Errors(β) =
m
∑

i=1

(X(i)β − yi)
2 = (Xβ − y)2 = ‖Xβ − y‖2

where ‖ · ‖2 is the L2-norm of a vector, we obtain the Classical Linear Regression or Least

Min-Square(LS):

Classical Linear Regression: β∗ is the solution to: min
β

(‖Xβ − y‖2) = min
β

(

(Xβ − y)2
)

Such a definition of the total prediction error TPError can give un-deserved weight to a small
number of bad samples. It means that one sample with a large prediction error is enough to
change completely β∗ (this is due to the squaring effect that “amplifies” the contribution of the
“outliers”). This is why some researcher use a L1 − norm instead of a L2 − norm:

Robust Regression: β∗ is the solution to: min
β

(‖Xβ − y‖1) = min
β

(

m
∑

i=1

|X(i)β − yi|

)

where | · | is the absolute value. We will not discuss here Robust regression algorithms. To find
the solution of a classical Linear Regression, we have to solve:

Error2(β∗) =min
β

{

(Xβ − y)2
}

=min
β

{

(Xβ − y)t(Xβ − y)
}

=min
β

{

(βtXt − yt)(Xβ − y)
}

=min
β

{

(βtXtXβ − ytXβ − βtXty + yty)
}

Since ytXβ is a scalar, we can take its transpose without changing its value: ytXβ = (ytXβ)t =
βt(ytX)t = βtXty. We obtain:

Error2(β∗) =min
β

{

βtXtXβ − 2βtXty
}

Error2(β∗) is minimum ⇔
∂Error2(β)

∂β
(β∗) = 0

⇔ 2XtXβ∗ − 2Xty = 0

⇔ XtXβ∗ = Xty (4)

3

The equation 4 is the well-known normal equation. On the left-hand-side of this equation we
find XtX = C ∈ <n×n: the correlation matrix. C is symmetric and semi-positive definite (all
the eigenvalues of C are ≥ 0). The element Cij =

∑m
k=1 XikXjk =< Xi, Xj >= Xt

iXj is the
correlation between column i and column j (where Xi stands for column i of X). The right-
hand-side of equation 4 is also interesting: it contains the univariate relation of all the columns
of X (the variables) with the target y.

We did previously the assumption that the constant term p of the model is zero. p is null when
mean(y) = 0 and mean(Xi) = 0 where mean(·) is the mean operator and Xi is the ith column
of X. Thus, in the general case, when p 6= 0, the procedure to build a model is:

• Compute mean(y), std(y), mean(Xi), std(Xi) where std(·) is the “standard deviation” op-
erator.

• Normalize the target: ỹ =
y − mean(y)

std(y)

• Normalize the columns of X: X̃i =
Xi − mean(Xi)

std(Xi)

• Since the columns of X̃ have zero mean, and since ỹ has zero mean, we have p = 0. We
can thus use the normal equations: X̃tX̃β̃ = X̃tỹ to find β̃. All the columns inside X̃ have
a standard deviation of one. This increase numerical stability.

• Currently, β̃ has been computed on the “normalized columns” X̃i and p = 0. Let’s convert
back the model so that it can be applied on the un-normalized X and y:

* βi =
std(y)

std(Xi)
β̃i, i = 1, . . . , n

* p = mean(y) −
n
∑

i=1

mean(Xi)βi

From now on, in the rest of this paper, we will always assume that p = 0 (data has been nor-
malized).

One simple way to solve the normal equations 4 is the following:

• Compute a Cholesky factorization L of C = X tX. i.e. Compute L such that L is a lower
triangular matrix and such that LtL = C.

• Let’s define v := Lβ. Then we have: Cβ = LtLβ = Ltv = Xty (the last equality comes
from equation 4). This last equation (Ltv = Xty)can be solved easily because Lt is
triangular. Once we have found v, we solve Lβ = v to find β (this is also easy because L

is triangular).

Unfortunately, the above algorithm is not always working properly. Let’s consider the case
where Xi = Xj . i.e. the variables i and j are 100% linearly correlated together. In this case,
we will have βiXi + βjXj = βiXi + βjXi = (βi + βj)Xi. βi can be any value at the condition
that βj := −βi (so that we obtain βi + βj = 0 and none of the columns i and j are meaningful
to predict y). Thus, βi can become extremely large and give undeserved weight to the column
i. We have one degree of liberty on the βi’s. This difficulty arises when:

4

• A column of X is a linear combination of other columns.

• The rank of A is lower than n.

• The matrix C = X tX is not of full rank n.

This problem is named the “multi-colinearity problem”. It is illustrated in figure 1 and 2.

x1

x2

� � � � or or y ax y bx y cx cx= = = +

� �x x=

�����

Figure 1: Stable Model

x1

x2

	�
 with 0y a x bx a b= + >> >

	

bx xa=

x1

x2

�� with b 0y a x bx a= + >> >

�
bx xa=

Figure 2: Unstable Models

The blue points inside figures 1 and 2 are the samples. The green points are the lines of X ∈ <9×2

(the inputs) and the heights of the blue points are the targets (y ∈ <9)(the output). There is
a linear correlation between X1 and X2: X1 ≈ CteX2. In the “blue direction” (perpendicular
to the black dashed line), we do not have enough reliable information to decide if the output y

should increase or decrease. Inside figures 1 and 2, a model β is represented by a plane. In this
situation, the ideal model that we want to obtain, is drawn in green in figure 1 (the plane/model
is ”flat”: there is no un-due variation of y in the “blue direction”). The equation of the ideal
model is either: y = ax1 or y = bx2 or y = cx1 + cx2. Note that, inside figure 2 (and also 1), we
do NOT have exactly X1 = CteX2 (the green point are not totally on the dashed line x1 = b

a
x2).

Thus, we theoretically have enough information in the “blue direction” to construct a model.
However exploiting this information to predict y is not a good idea and leads to unstable models:
a small perturbation of the data (X or y) leads to a completely different model: Inside figure

5

2, we have represented in red two models based on small perturbations of X and y. Usually,
unstable models have poor accuracy. The main question now is: How to stabilize a model? Here
are two classical solutions:

1. Inside figure 1, the ’information’ that is contained in X1 is duplicated in X2. We can
simply drop one of the two variables. We obtain the models y = ax1 or y = bx2. The
main difficulty here is to select carefully the columns that must be dropped. The solution
is the “LARS/Lasso Algorithm” described later in this paper.

2. The other choice is to keep inside the model y = β1x1 + β2x2 all the variables (β1 6= 0 and
β2 6= 0). However, in this case, we must be sure that:

• β1 ≈ β2

• β1 and β2 are small values (I remind you that β1 and β2 can become arbitrarily large).

We must find an algorithm to compute β that will “equilibrate” and “reduce” the βi’s:

β∗is the solution of = min
β

{

(Xβ − y)2 + λβ2
}

⇔ (XtX + λI)β∗ = XtY (5)

This technique is named “Ridge regression”. When λ increases, all the βi are “equilibrated”
and “pushed” to zero as illustrated in figure 3. We will discuss later of a way to compute an

iβ

� ����� ���
	 � �������� ������� λ

Figure 3: The βi’s sorted from greatest to smallest for different value of λ.

optimal regularization parameter λ. Inside figure 1, we obtain the model β = (β1 β2)
t =

(c c)t and we have thus y = cx1 + cx2 with c ”small”.

The “Ridge regression” technique is particularly simple and efficient. It has a nice graphical
explanation. The “Ridge regression” technique is in fact searching for β∗ that minimizes Q(β) =
Squared Error(β) = (Xβ−y)2 under the constraint that ‖β∗‖2 < r. This definition is illustrated
on the left of figure 4. We seek the solution β∗ of the minimization problem:

min
β∈<n

Q(β) ≡ gt
kβ +

1

2
βtHβ subject to ‖β‖2 < r (6)

(with H = XtX and g = −Xty) To solve this minimization problem, we first have to rewrite
the constraint: c(β) = 1

2r2 − 1
2βtβ < 0. Now, we introduce a Lagrange multiplier λ and the

6

ridgeβ

1β

2β

normal equationβ

2 2() () ()Q E X yβ β β= = −

r

lassoβ

1β

�β

normal equationβ

2 2() () ()Q E X yβ β β= = −

r

Figure 4: On the left: Illustration of Ridge Regression. On the right: Illustration of Lasso

Lagrange function:

L(β, λ) = Q(β) − λc(β)

Using the Lagrange First order optimality criterion, we know that the solution (β∗, λ∗) to this
optimization problem is given by:

∇βL(β∗, λ∗) = 0
⇔ ∇Q(β∗) − λ∗∇c(β∗) = 0
⇔ Hβ∗ + g + λ∗β∗ = 0
⇔ (H + λ∗I)β∗ + g = 0
⇔ (XtX + λ∗I)β∗ − XtY = 0
⇔ (XtX + λ∗I)β∗ = XtY

which is equation 5. Thus the constraint ‖β‖2 < r prevents the βi’s from becoming arbitrarily
large. As illustrated in figure 3, the ridge regression algorithm “pushes” all the βi’s towards zero
but none of the βi actually gets a null value. It’s interesting to have βi = 0 because, in this case,
we can completely remove from the model the column i. A model that is using less variables has
many advantages: it is easier to interpret for a human and it’s also more stable. What happens
if we replace the constraint ‖β‖2 < r with the constraint ‖β‖1 =

∑n
i=1 |βi| < r? See the right

of illustration 4. You can see on the figure that βlasso = (β∗
1 , β∗

2) with β∗
1 = 0. You can see on

figure 5 that, as you decrease r, more and more β∗
i are going to zero. The Lasso regression is

defined by: β∗ is the solution of the minimization problem:

min
β∈<n

(Xβ − y)2 subject to ‖β‖1 < r (7)

As you can see, computing different β’s (with a different number of null βi’s) involves solving
several times equation 7 for different values of r. Equation 7 is a QP (Quadratic Programming)
problem and is not trivial to solve at all. The Lasso algorithm, as it is described here, is thus
very demanding on computer resources and is nearly of no practical interest. Hopefully, there
exist another, more indirect, way to compute at a very little cost all the solutions β of the
Lasso Algorithm for all the values of r. A modification of the LARS algorithm computes all the

7

iβ

������� ����	
 �������� ������� r

�

Figure 5: The βi’s sorted from greatest to smallest for different values of r

Lasso solution in approximatively the time needed to compute and solve the simple “normal
equations” (equation 4) (the algorithmic complexity of the two procedures is the same). LARS
stands for “Least Angle Regression laSso”. We will not describe here the LARS algorithm but
we will give an overview of some of its nicest properties.

The LARS algorithm is a refinement of the FOS (Fast Orthogonal Search) algorithm. We will
start by describing the FOS algorithm. The FOS (and the LARS algorithm) is a forward step-
wise algorithm. i.e. FOS is an iterative algorithm that, at each iteration, includes inside its
model a new variable. The set of variables inside the model at iteration k is the “active set”
Ak. The set of variables outside the model is the “inactive set” Ik. XA is a subset of column of
X containing only the active variables at iteration k. XI is a subset of column of X containing
only the inactive variables at iteration k.

Let’s first illustrate the equation 2: Xβ = y. Equation 2 can be rewritten:

Xβ = β1

...
X1
...

+ β2

...
X2
...

+ · · · + βn

...
Xn

...

=

...
y
...

(8)

If X ∈ <m×n, then Xi ∈ <m is a column of X. Xi can also be seen as a vector in a m dimensional
space and β ∈ <n is the best linear combination of the Xi vectors to reach the target y. The
“vector view” of equation 8 is illustrated in figure 6 where

X ∈ <3×2 =

1 1
1 −1
0 0

 and β =

(

2
1

)

and y =

3
2
3

The FOS algorithm does the following:

1. Let’s define the residual prediction error at step k as Ek. We have E0 := y. Normalize the
variables Xi and the target y to have ‖Xi‖2 = 1 and ‖y‖2 = 1 . Set k := 0, the iteration
counter.

2. This step is illustrated in figure 7, Part 1. We will add inside Ak the variable j that is
“the most in the direction of Ek”. i.e. the “angle” αj between Xj and Ek is smaller than

8

���Xβ
�X

�X

���Xβ

��� �	��
��� ����

y

()X yβ= −

Figure 6: Graphical interpretation of Xβ = y

�X

�X

���Xβ
�X

�X

�y Error=

���Xβ
�X

�X

�Error

���Xβ
�α

�α

������� � �	�����"! �	�����"#

�y Error=

Figure 7: Illustration of the FOS algorithm

all the other angles αi (i 6= j) between the Xi’s and Ek. Using the well-know relation:

cos(αi) =
< Xi, Ek >

‖Xi‖ ‖Ek‖
(9)

Since the variables Xi have been normalized, we obtain:

cos(αi) = Cte Xt
iEk (where Cte =

1

‖Ek‖
) (10)

Note that X t
iEk is simply the correlation between variable i and the Residual Error Ek.

Thus the algorithm is: “compute a ∈ <n := Xt
IEk. Find j such that

aj = max
i

{ai} (11)

Add the variable j to the active set Ak. Remove variable j from the inactive set Ik”.

3. This step is illustrated in figure 7, Part 2. We now compute βj , the length of the “step”
in the direction Xj (inside the example j = 1). Let’s project (orthogonally) Ek inside the
space that is “spanned” by the active variables. The projection of Ek is named Eproj . We

obtain βj =
‖Eproj‖
‖Xj‖

= ‖Eproj‖ since Xj is normalized. If the projection operator fails (Xj

is inside the space spanned by the active set Ak−1 of variables), remove j from the active
set Ak and go to step 2.

4. Deflation: update of the Residual Error: Ek+1 := Ek − Eproj .

9

5. If Ik is empty then stop, otherwise increment k and go to step 2.

Let’s define na, the number of active variable at the end of the algorithm. If you decide to stop
prematurely (for example, when Ek−1 − Ek ≈ 0), you will have na << n. The FOS algorithm
has several advantages:

• It’s ultra fast! Furthermore, the computation time is mainly proportional to na. If na <<

n, then you will go a lot faster than when using the standard normal equations.

• The algorithm will “avoid” naturally the correlated columns. I remind you that a model
that is using two strongly correlated columns is likely to be unstable. If column i and j

are strongly correlated, they are both “pointing” to the same direction (the angle between
them is small: see equation 9 and figure 6) . If you include inside the active set the column
Xi, you will obtain, after the deflation, a new error Ek+1 that will prevent you to choose
Xj at a later iteration. One interpretation is the following: “All the information contained
inside the direction Xi has been used. We are now searching for other directions to reach
y”. It is possible that, at the very end of the procedure, the algorithm still tries to use
column Xj . In this case, the projection operator used at step 3 will fail and the variable
Xj will be definitively dropped. Models produced with the FOS algorithm will thus be
usually very stable.

• The selection of the column that enters the active set is based on the “residual error”
Ek at step k (with E0 = y). This selection is thus exploiting the information contained
inside the target y. The “target information” is not used by other algorithms that are
based on SVD of X or QR factorization of X. The FOS algorithm will thus performs a
better variable selection than SVD- or QR-based algorithm. Many other algorithms do
not use any deflation. Deflation is important because it allows us to search for variables
that explains the part of the target that is still un-explained (the residual error Ek). A
good variable selection is useful when na << n.

• The memory consumption is very small. To be able to use the FOS algorithm, you only
need to be able to store in memory the target y, one line of X, and a dense triangular
matrix of dimension na. Other algorithms based on QR factorization of X requires to
have the full X matrix inside memory because the memory space used to store X is
used during the QR factorization to store temporary, intermediate results needed for the
factorization. Algorithms based on SVD of X are even more memory hungry. This is
a major drawback for most advanced applications, especially in Econometrics where we
often have X ∈ <107×104

. There exists some “out of core” QR and SVD factorizations that
are able to work even when X does not fit into memory. However “out of core” algorithms
are currently extremely slow and unstable.

There is however one major drawback to the FOS algorithm. It is illustrated in figure 8 where
we have:

X ∈ <3×3 =

1 0 1
0 1 1
0 0 1

 and β =

1
1
0

 and y =

1
1
0

 (12)

At the first iteration, the FOS algorithm selects X3 because Xt
3 y = 2 is greater than X t

1 y =
Xt

2 y = 1 (and E0 = y). Thereafter, the FOS algorithm computes the new Residual Error
E1 = (0 0 −1)t and get stuck. Indeed, if we add to the active set either X1 or X2, the L2-norm

10

�X

�X

�y Error=

�X �X

�X

�Error

�X

Figure 8: FOS algorithm fails and gives β = (0 0 1)t

of the Residual Error do not decrease: ‖E2‖2 = ‖E1‖2. There is no way to add a new variable
to decrease the Residual Error and thus the algorithm stops. There are mainly two conceptual
reasons why the FOS algorithm fails:

1. The FOS algorithm is a forward stepwise algorithm and, as almost all forward stepwise
algorithms, it is not able to detect multivariate concepts. In the example illustrated in
figure 8, the target is defined precisely to be Y = X1 + X2. You are able to predict the
target accurately if your model is β = (1 1 0)t. The FOS algorithm gives the wrong model
β = (0 0 1)t. In this example, the target y is a multivariate concept hidden inside two
variables: X1 and X2. A forward stepwise algorithm that is able to detect a multivariate
concept is very difficult to develop. Inside FOS, the selection of the variable Xj that enters
the active set is only based on the univariate relation of Xj with the target Y . On the
contrary, Backward stepwise algorithms have no problem to detect multi-variable concepts
and should thus be preferred to a Simple,Classical Forward Stepwise Algorithm. However,
usually, Backward stepwise algorithms are very time consuming because they need first to
compute a full model and thereafter to select carefully which variables they will drop.

The LARS algorithm with Lasso modification is a forward stepwise algorithm that pro-
duces all the solutions of the Lasso algorithm in a computing time proportional to na (na

is the number of active variable at the end of the algorithm). The Lasso algorithm is part
of the family of the backward stepwise algorithm (It starts with a full model and remove
some variables when r decreases: see equation 17). Thus, the Lasso algorithm is able to
discover multi-variable concepts. And thus, the LARS algorithm with Lasso modification
is also able to discover multi-variable concepts (since LARS with Lasso gives the same
models than the Lasso algorithm). From my knowledge, the LARS algorithm with Lasso
modification is the only forward stepwise algorithm able to discover multi-variable con-
cepts. Since, it’s a forward stepwise algorithm, it’s also very fast.

On the other side, conjunctive concepts are easy to detect. Let’s assume that you have
the following:

X ∈ <3×2 =

1 0
0 1
1 1

 and β =

(

1
1

)

and constant term=p = −1 and y =

0
0
1

11

If you create a column X3 = X1 ∗ X2 (X3,i = X1,iX2,i, i = 1, . . . , m), you obtain:

X3 =

1 × 0 = 0
0 × 1 = 0
1 × 1 = 1

 and β =

0
0
1

i.e. You can represent conjunctive concepts with the product of variables. You will thus
obtain second order models. Computing second order models usually involves extending
the original X matrix with columns that are the product of some of the columns of the
original X. This is usually a very memory expansive operation. Indeed if n is the number
of column of X, then the extended Xextended matrix has 1

2n(n + 1) columns. The LARS
library has been built to allow you to easily create “on the fly” a regressor (= one line
of Xextended). i.e. you only need to be able to store in memory one line of Xextended, not
the whole Xextended matrix. This allows you to compute at a low memory consumption
second, third, fourth,... order models.

2. The FOS algorithm is “too greedy”: when the FOS algorithm finds a good direction, it is
exploiting this direction “to the maximum” (the length of the steps is ‖Eproj‖). Thereafter
there is no “room left” for further improvements, adding other variables. The FOS has
been “trapped” in a so-called “local optimum”. The LARS algorithm is not so greedy. Its
steps lengthes are shorter (see step 3. of the FOS algorithm about “steps”). This means
that the different models that are computed at each steps of the LARS algorithm are not
100% efficient. With the same set of active variables, one can compute a better model.
The LARS library downloadable on this page allows you to obtain both models:

• the most efficient one.

• the one used inside the LARS algorithm to search for the next variables to add inside
the active set.

To resume, the LARS algorithm has all the advantages of the FOS algorithm:

1. ultra fast.

2. correlated columns are avoided to obtain stable models.

3. Selection of the active variables based on the target (Deflation).

4. small memory consumption.

Furthermore, the LARS algorithm with Lasso modification is able to discover multivariate con-
cepts easily. For example, the LARS algorithm with LASSO modification finds β = (1 1 0)t

for the example illustrated in figure 8.

There exists one last question to answer when using the LARS algorithm: When to stop? How
to choose na? The question is not simple. Several strategies are available inside the LARS
library downloadable on this page:

1. Let’s define a(k) the maximum correlation of the inactive columns with Ek, the residual
error at iteration k (see the definition of aj in equation 11).

if ((a(k − 10) − a(k)) < sa a(0), then stop (13)

where sa is a user-defined parameter (usually sa = .05) and k is the iteration index.

12

2.

if ((E2
k−10 − E2

k) < sE E2
0 , then stop (14)

where Ek is the residual error at iteration k and sE is a user-defined parameter (usually
sE = .01).

3. Let’s define Cp(k) = E2
k − n + 2 ∗ na(k) where na(k) is the number of active variable at

iteration k.

if (Cp(k) > max{Cp(k − sc), Cp(k − sc + 1), . . . , Cp(k − 1)}, then stop (15)

where sc is a user-defined parameter (usually sc = 5) and k is the iteration index.

4. Let’s define minCV Error(k) as the n-Fold-Cross-Validation-Error of a model β(k) that
has been regularized using an optimized ridge parameter λ.

if (minCV Error(k) > minCV Error(k − 1)), then stop (16)

where k is the iteration index (WARNING: very slow! It involves a full derivative-free op-
timization algorithm (Brent) at each iteration of the LARS algorithm to find the optimum
λ).

My advice is :

1. to choose a very stringent termination test (like the first one with sa = .005) to be sure to
have all the informative variables. sa has a nice and easy interpretation: it’s the percentage
of the variance inside y that will not be explained.

2. to perform a backward stepwise, using as initial model, the model given by the LARS
algorithm. The LARS library has been designed so that such task is very easy to code.

My experience is that stopping criterions based on MDL, Akkaike index or Cp statistics are not
reliable.

Methodology

To be able to answer the simple question “How good is my model?” you need a good method-
ology. Let’s assume that we have a set of data X and y. You will cut this data in three parts:
a creation set Xcrea, a validation set Xval and a test set Xtest. The procedure is illustrated in
figure 9. The creation set will be used to build a first model. You can build the model β using
the normal equation (X t

creaXcreaβ = Xt
creaycrea) or using the LARS algorithm. Thereafter the

model β needs to be stabilized (stabilization is less important if you have built the model with
the LARS algorithm but can still improve a little your model). There are mainly two simple
ways to stabilize a model: Remove un-informative variables (this is called ”backward stepwise”)
and Ridge Regression.

To remind you, the Ridge Regression is based on equation 5:

(Xt
creaXcrea + λI) β(λ) = X t

creaycrea (17)

13

Training Set

Creation Set
(u s u al l y 6 0 % of d ata)

Validation Set
(u s u ally 2 0 % of data)

Test Set
(u su a l l y 2 0 % o f d a ta)

X
creaX

� � �X

� � � �X

Figure 9: Data are cut into three parts

where λ is the regularization parameter that needs to be adjusted, β(λ) is the model (depending
on the value of λ) and Xcrea is the creation set. If λ is high, the model will be strongly stabilized.
The optimal value of the λ parameter is λ∗. λ∗ is the solution to the optimization problem:

min
λ

(

(Xval β(λ) − yval)
2
)

where β(λ) is computed from equation 17. We are searching for the value of λ that gives the
best model when applied on the validation set. We are improving the “generalization ability”
of our model. Since we never used any data from the validation set to build our model, the
performance of the model β(λ) is entirely due to its “generalization ability”.

To stabilize your model, you can also completely remove some variables using a “backward
stepwise” algorithm. Here is a simple “backward stepwise” algorithm:

1. Let’s define X
(−i)
crea , the creation set without the column i. Let’s define sqEref = (Xvalβ −

yval)
2 where β is the solution to the standard normal equation: X t

creaXcrea β = Xt
creaycrea.

sqEref is the performance on the validation set of a model β using all the columns of the
creation set Xcrea. Set i := 0.

2. We will try to remove the variable i. Compute β(−i), the solution to X
(−i)t
crea X

(−i)
crea β(−i) =

X
(−i)t
crea ycrea. Compute sqE(−i) = (Xvalβ

(−i) − yval)
2: the performance of the model β(−i)

on the validation set Xval when the model is built without taking into account the ith

column of the creation set Xcrea. If sqE(−i) ≈ sqEref , then the column i did not contain

any information and can be dropped: Set Xcrea := X
(−i)
crea .

3. Choose another i and go back to step 2.

Let’s define A, the optimal set of column after the backward stepwise.

Once we have found an optimal ridge parameter λ∗ and/or the optimal set A of informative
columns (backward stepwise), we can compute the final model β∗ using:

(Xt
trainXtrain + λ∗I) β∗ = Xt

trainytrain (18)

where Xtrain contains only the columns in A.

14

WARNING: If you try to use both regularization techniques at the same time, they will “enter
in competition”. You should then be very careful.

To get an idea of the quality of your final model β∗, you can apply it on the test set:

Squared Error on test set=(Xtest β∗ − ytest)
2

It’s crucial to never use the data in the Test Set Xtest when building the model because otherwise
the results will always be too optimistic. Indeed, if we have used a part of the test set to build
the model, we are “cheating”: we are not truly estimating the “generalization ability” of our
model.

The methodology just described here is a correct approach to a modelization problem. However,
this approach does not use a very large validation and test set. Since the validation set is small,
the λ parameter and the set A of active columns will be very approximative. Since the test set
is small, the estimation of the quality of the model is also very approximative. To overcome
these difficulties, we can use a n-fold-cross-validation technique. If we want a more accurate
estimation of the quality of the model, we can build 5 test sets instead of one: see figure 10. It’s
named a 5-fold-cross-validation. It also means that we have 5 training sets and thus 5 different
models. The main point here is that none of these 5 models have seen the data that are inside
their corresponding test set.

Training Set
(4/ 5 o f X)

���������	�
�
�
�� ���������

Training Set
(4/ 5 o f X)

�����������
�
��������������

�����������
�
�
�� ���������

�����������
�
�
�� ���������

���������	�
�
���� ���������

Training Set
(4/ 5 o f X)Training Set

(4/ 5 o f X)

Training Set
(4/ 5 o f X)

� !" # $&% 'X

() *+ , - +X

. /�01 2 3&4 5X

6 798: ; <�= >X

? @
AB C D�E FX
� ���G H�I�J KX

L M�NO P Q OX

L R NO P Q OX

L S�NO P Q OX

L T NO P Q OX
B1

B2

B3

B4

B5

Figure 10: 5 test sets (and 5 training sets))

An estimation of the overall quality of our modelization is:

overall quality of the modelization=
5-fold-cross-validation error=

5
∑

i=1

(Xtest(i)β(i) − Ytest(i))
2

where β(i) is the solution to X t
train(i)Xtrain(i) β(i) = Xt

train(i)ytrain(i) (19)

where Xtrain(i) and Xtest(i) are defined on figure 10.

15

When we perform a n-fold-cross-validation, we must compute n different models β(i), i =
1, . . . , n using equation 19. The only time-consuming part inside equation 19 is the computation
of Xt

train(i)Xtrain(i). Here is a small “trick” to be able to compute X t
train(i)Xtrain(i), i = 1, . . . , n

in a very efficient way: If we define Bi as in figure 10, we can compute Ci = Bt
iBi, Ci ∈ <n×n.

Then, we have:

Xt
train(1) Xtrain(1) = C1+ C2+ C3+ C4

Xt
train(2) Xtrain(2) = C1+ C2+ C3+ C5

Xt
train(3) Xtrain(3) = C1+ C2+ C4+ C5

Xt
train(4) Xtrain(4) = C1+ C3+ C4+ C5

Xt
train(5) Xtrain(5) = C2+ C3+ C4+ C5

Xt
train Xtrain = C1+ C2+ C3+ C4+ C5

(20)

Thanks to equations 20, we can compute X t
train(i)Xtrain(i), i = 1, . . . , n very easily: only a few

matrix additions are needed. The same property of addition exist for the right hand side of
equation 19: X t

train(i)ytrain(i). Since solving equation 19 is instantaneous on modern CPU’s

(only the computation of X t
trainXtrain is time-consuming), we can easily obtain the 5 different

models β(i) and the n-fold-cross-validation is “given nearly for free”.

The same technique can be applied to increase the size of the validation set: see figure 11.

Test Set
(1 / 5 o f X)

� � �� � � �X

Test Set
(1 / 5 o f X)

� � �� � � �X

Test Set
(1 / 5 o f X)

� � �� � � �X

Creation Set���
	 �������

����� � ����� � �����! �
"$#�% &('�)
*,+

����� � ����� � �-���. �
"$#�% &,'/)
*,+

�0�-� � �1��� � �����! �
"$#�% &,'/)�*,+

�0�-� � ���/� � �-�2�! �
"3#�% &,'/)
*4+

Creation Set���
	 �������

Creation Set���
	��5������

Creation Set���
	��5������

T es t Set
(1 / 5 of X)

6 7 89 :�; 9X

< = >? @�AX

B CEDF G�HX

B I�DF G�HX

B JEDF G�HX

6 7 8K L : MX
N O/PQ R S TX

N U3PQ R S TX
N V�PQ R S TX

Figure 11: 4 validation sets (and 4 creation sets))

When building a model, the first step is the normalization of all the variables (the columns Xi).
The normalization of a variable Xi consist of two steps:

1. We subtract from the column Xi its mean mean(Xi)

2. We divide the column Xi by its standard deviation std(Xi)

Thereafter the Ci = Bt
iBi are computed: see equation 20 and figure 10. Based on the Ci’s we can

compute easily many different models β(i). Let’s assume that we want a model that is completely

16

ignoring the block B1: the block B1 will be used as test set. Referring to figure 10, the test
set is Xtest(5) and the training set is Xtrain(5). The columns in block B2 have been normalized
using mean(Xi) and std(Xi). The two parameters mean(Xi) and std(Xi) are partially based
on information contained inside the block B1. We are breaking the rule that says:

“never use any information from the test set to build a model” (21)

The columns in B2 (part of the creation set) are normalized using information from B1 (the test
set). This small “infraction” of the rules is usually negligible and allows us to reduce consider-
ably the computation time. However, for some rare variables, the rule must be respected strictly.
These variables are named “dynamic variables”. The LARS library does a strong distinction
between “dynamic variables” and “static variables”. The LARS library handles both types of
variables. However only the ”static variables” are reviewed inside this documentation.

The concept of “dynamic variables” is linked with the concept of “variable recoding”. The
normalization of the variables is a (very basic) recoding. If there is no recoding, there is no
“dynamic variables”. The “normalization of a variable” is a recoding that never produces any
“dynamic variables” (especially if all the lines of X have been correctly scrambled). “Dynamic
variables” appears mostly when using advanced recodings such as, for example, in the paper
“1-Dimensional Splines as Building Blocks for Improving Accuracy of Risk Outcomes Models”
by David S. Vogel and Morgan C. Wang. The LARS library is handling advanced recodings
through the use of “dynamic variables”.

Inside the LARS library, the λ parameter of the Ridge Regression is computed using a n-fold-
cross-validation on the validation sets. Equations 20 are used to achieve high efficiency. The
Ci ∈ <na×na matrices are built incrementally each time a new variable enters the active set A.
The equations 19 are solved using an advanced Cholesky factorization that is using an advanced
pivoting strategy and an advanced perturbation strategy to obtain a very high accuracy model
even when the matrices (X t

·(i)X·(i)) are close to singularity or badly conditioned.

The LARS library has been written to use the less memory possible. For example, all the Ci

matrices are symmetric, thus we only need to store half of these matrices in memory. “In place”
factorization of matrices have been used when possible.

It can happen inside the LARS forward stepwise algorithm that several variables should enter

the active set Ak at the same iteration k (there are several values of j that are possible inside
equation 11). It can also happens that several variables should leave the active set Ak at the
same iteration k. Most algorithms do not treat correctly these special cases. The LARS library
is handling correctly these cases.

How to use the library?

The LARS library inside Matlab

The usage is:

[betaBest,betas,errors,cHats]=matlabLARS(X,y,stoppingCriteriaType,...

stoppingCriteriaValue,lassoModif, verbosity);

17

matlabLARS is an iterative algorithm that compute different β’s ∈ <n such that (Xβ − y)2 is
minimum (classical least-square). The X matrix and the y vector do not need to be normalized.

At the first iteration only one βi is non-null. At each iteration k, we will:

• set one more βi to a non-null value.

• compute Error2 where Error= (Xβ − y)

• compute cHat= a(k) (see equation 13 about a(k))

The different β’s, computed at each iterations, are stored inside the matrix ’betas’. The best
model among all the models according to the selected stopping criteria is stored in ’betaBest’.
In a similar way, at each iteration, the squared error Error2 and the maximum correlation values
cHat, are stored respectively inside the matrices ’errors’ and ’cHats’.

If the lasso modification is used (set lassoModif=1), then some βi could be reset to a null value
at some rare iterations.

Let’s define cHat(k) the value of cHat at iteration k.
Let’s define sqEr(k) the value of Error2 at iteration k.
Let’s define n(k) the number of non-null βi at iteration k.
The variable ’stoppingCriteriaType’ is a character that can be:

• ’R’: if ((cHat(k-10)-cHat(k))< stoppingCriteriaValue cHat(0)), then stop

• ’S’: if ((sqEr(k-10)-sqEr(k))< stoppingCriteriaValue sqEr(0)), then stop

• ’C’: Cp test: Let’s define

– Cp(k) = sqEr(k)-nCol+2*n(k)

– p =stoppingCriteriaValue

if (Cp(k)> max Cp(k-p), Cp(k-p+1),..., Cp(k-1)), then stop

• ’M’: Let’s define minCVError(k) as the 6-Fold-Cross-Validation-Error of a model beta(k)
that has been regularized using an optimized ridge parameter λ.
if (minCVError(k)>minCVError(k-1)), then stop

• ’E’: if (stoppingCriteriaValue=-1) include all columns, otherwise:
if (number of non-null βi=stoppingCriteriaValue), then stop
The variable ’verbosity’ is optional. It’s a number between 0 and 2. (2=maximum
verbosity).

As previously mentioned, if you select a specific set of active variable, you can compute at least
two different models β:

• the most efficient one (stored inside betaBest)

• the one used inside the LARS algorithm to search for the next variables to add inside the
active set (stored inside betas).

18

betaBestn+1 is the constant term of the model. All the models (in betas and betaBest) are
computed to be applied on un-normalized data.

The Matlab interface to the LARS library is very poor compared to the C++ interface. The
source code of the matlab interface (in C++) is inside the zip-file downloadable inside this
webpage. If you want to customize the Matlab version of the LARS library, it’s very easy to
edit/modify the small C++ code. The C++ interface is documented below.

The LARS library as a stand-alone executable

Inside the zip-file downloadable inside this webpage, you will find the source code of a small
C++ executable that solves the ‘diabetes’ example. The ‘diabetes’ data are stored inside an
external .csv file. The last column of the .csv file is the target. A very fast .csv-file-reader is
provided.

It’s very easy to edit/modify the small C++ code to customize it to your needs. The C++
interface is documented below.

The LARS library in C++

The LARS library is available as a .dll file. To use this .dll file in your own project you must:

• In the “debug” version of you program, add inside the “Linker/Input/Additional Depen-
dencies” tab: “larsDLLDebug.lib”

• Inside the directory containing the executable of the “debug” version of you program, add
the file “larsDLLDebug.dll”

• In the “release” version of you program, add inside the “Linker/Input/Additional Depen-
dencies” tab: “larsDLL.lib”

• Inside the directory containing the executable of the “release” version of you program, add
the file “larsDLL.dll”

• Add inside your project the files “lars.h” and “miniSSEL1BLAS.h”

In order to work, the LARS library must access the X matrix and the y vector. The normal-
ization of X and y is done automatically inside the LARS library, if needed. You can provide
the data (X and y) in two different ways:

• Line by Line: You must create a child of the LARS class. Inside the child class, you must
re-define some of the following functions:

– larsFLOAT *getLineX(int i, larsFLOAT *b);

This function return the ith line of X. The required line can be stored inside the b

array or inside an other array. A pointer to the array containing the line must be
returned.

– larsFLOAT getLineY(int i);

This function return the ith component of y: yi. Alternatively, you can use the third
parameter of the getModel function to specify a target.

19

– void setSelectedColumns(int n,int *s);

The re-definition of this function is optional. The default implementation is:

void LARS::setSelectedColumns(int n,int *s) { selectedC=s; nSelected=n; }

The setSelectedColumns function announces that subsequent calls to the function
getLineXRequired will return only a part of the column of X. The indexes of the
columns that should be returned are given inside the array s of length n.

– larsFLOAT *getLineXRequired(int i, larsFLOAT *b);

The re-definition of this function is optional. However, it’s strongly recommended
that you re-define this function for performance reasons. The default implementation
is:

larsFLOAT *LARS::getLineXRequired(int i, larsFLOAT *b)

{

int j,ns=nSelected, *s=selectedC;

larsFLOAT *f=getLineX(i,b);

for (j=0; j<ns; j++) b[j]=f[s[j]];

return b;

}

This function returns only the columns of line i that have been selected using the
function setSelectedColumns.

• Column by Column: You must create a child of the LARS class. Inside the child class,
you must re-define the following functions:

– larsFLOAT *getColX(int i, larsFLOAT *b);

This function return the ith column of X. The required column can be stored inside
the b array or inside an other array. A pointer to the array containing the line must
be returned.

– larsFLOAT *getColY(larsFLOAT *b);

This function return the target y. The target y can be stored inside the b array or
inside an other array. A pointer to the array containing y must be returned. Alter-
natively, you can use the third parameter of the getModel function to specify a target.

Let’s now assume that you have created a child of the base LARS class named LARSChild. You
can now configure the different parameters of the LARS algorithm. Typically, you define these
parameters inside the constructor of LARSChild. The parameters are:

• nCol: the number of column of X.

• nRow: the number of rows of X.

• orientation: if orientation=’L’, then we access the X matrix line by line. Otherwise,
we access the X matrix column by column.

• lasso: if lasso=1, then the lasso modification of the LARS algorithm is used.

20

• fullModelInTwoSteps: if fullModelInTwoSteps=1, then no forward stepwise is per-
formed: we are directly building a model using all the column of X. When the number of
column nCol is small this is faster than the full LARS algorithm.

• ridge: if ridge=1, then an optimization of the λ parameter of the ridge regression is
performed at the end of the build of the model (this requires nFold > 1).

• memoryAligned: all the linear algebra routines are SSE2 optimized. This means that
the functions getCol* and getLine* should return a pointer to an array that is 16-byte-
memory-aligned. Such an array ca be obtained using the mallocAligned function of the
miniSSEL1BLAS library. If you are not able to provide aligned-pointers, you can set
memoryAligned=0, but the computing time will be more or less doubled.

• nMaxVarInModel: maximum number of variables inside the model when performing a
forward stepwise (this is a stopping criteria).

• nFold: the number of block Bi (as defined in figure 10) for the n-fold-cross-validation.

• folderBounds: an array of size nFold+1 of integer that contains the line-index of the first
line of each Bi (as defined in figure 10). We should also have folderBounds[nFold]=nRow.
If you don’t initialize this parameter, then folderBounds will be initialized for you auto-
matically so that all the blocks Bi have the same size.

• stoppingCriteria: define which kind of stopping criteria will be used inside the forward
stepwise:

– stoppingCriteria=’R’: stop based on the maximum correlation aj of the inactive
columns with the residual error. see equation 13 with sa := stopSEP.

– stoppingCriteria=’S’: stop based on the L2-norm of the residual error ‖Ek‖2: see
equation 14 with sE := stopSEP.

– stoppingCriteria=’C’: stop based on the Cp criterion: see equation 15 with sc :=
stopSEP.

– stoppingCriteria=’M’: stop based on the n-Fold-cross-validation-Error of the model:
see equation 16.

Further configuration of the stopping criteria is available through the re-definition inside the
class LARSChild of these two functions:

• void initStoppingCriteria(larsFLOAT squaredError, larsFLOAT cHat);

This function is used to initialize internal variables for the stopping criteria.

• char isStoppingCriteriaTrue(larsFLOAT squaredError, larsFLOAT cHat, larsFLOAT

*vBetaC, LARSSetSimple *sBest);

If this function returns ’1’, the LARS forward stepwise algorithm stops. If this function
returns ’0’, the LARS algorithm is continuing. This function update the object sBest.
Typically, when a good selection of variable is found we do: sBest->copyFrom(sA);. The
final model contains only the variables inside sBest.

This is all for the configuration of the LARS library! Now we are describing the outputs. Before
using any of the outputs, you must initialize and compute many intermediate results. This is
done through the function getModel that is usually called on the last line of the constructor of

21

the LARSChild class. The prototype of the getModel function is:

larsFLOAT *getModel(larsFLOAT **vBetaf=NULL, LARSSetSimple *sForce=NULL, LARSFloat

*target=NULL, LARSError *errorCode=NULL);

You usually call it this way:

larsFLOAT *model=NULL;

LARSSETSimple sForce(1); sForce.add(3);

getModel(&model,&sForce);

This means that the LARS library will construct a model β that will be returned inside the
array pointed by model (you must free this array yourself). The model will be “forced” to use
the column 3. The LARSSETSimple class is a class that contains a set of indexes of columns of X.

Here is a detailed description of the parameters of getmodel:

• First parameter [output]: This parameter describes an array that will be used to store
the model. In the example above model was set to NULL, so the getModel function
allocates itself the memory needed. You can allocate yourself the memory used to store
the model: for example:
larsFLOAT *model=(larsFLOAT*)mallocAligned((nCol+1)*sizeof(larsFLOAT));

getModel(&model);

• Second parameter [input]: Describes the set of variables that will be added inside the
model. If you use the forward stepwise algorithm and if you stop prematurely, this set of
variable will be added to the active variables. Of course, adding a variable that is already
active will have no effect.

• Third parameter [input]: Describes the target. This should be an array allocated with:
larsFLOAT *target=(larsFLOAT*)mallocAligned(nRow*sizeof(larsFLOAT)+32);

The LARS library will free this array for you at the right time. If you use this parameter
and if (stoppingCriteria<>’M’), then the LARS library will not use the getColY or
the getLineY functions (you don’t have to define them).

• Fourth parameter [output]: an error code that can be interpreted using the getErrorMessage
function.

Here is a detailed description of the (some of the) outputs:

• sA: you don’t have direct access to the content of sA. Usually, you do the following:
getModel();

LARSSETSimple sInModel(sA);

The object sInModel contains the set of indexes of all the columns that are used inside
the final model.

• invStdDev: this is an array that contains the inverse of the standard deviation of all the
columns of X. If you have normalized yourself the column of X (so that ‖Xi‖2 = 1), this
array is NULL.

• invStdDevY: the inverse of the standard deviation of y.

22

• mean: this is an array that contains the mean of all the column of X. If you have
normalized yourself the column of X (so that mean of Xi = 0), this array is NULL.

• meanY: the mean of y.

• lambda: the optimal ridge parameter λ.

• target: the residual error Ek ∈ <m at the end of the LARS algorithm (NOT normalized).

Here is a small sketch of a backward stepwise algorithm:

1. Build a model using the getmodel function. Stop prematurely. The index of the active
variables are stored inside sA.

2. Try to remove variable i:

• Get a copy sCopy of all the variable inside the model: sCopy.copyrom(sA);

• Remove variable i from sCopy: sCopy.remove(i);. Let’s define na, the number of
variable inside sCopy: int na=sCopy.n;.

• This computes a model using only the columns inside sCopy:
larsFLOAT *vBeta=(larsFLOAT*)malloc((nCol+1)*sizeof(larsFLOAT));

buildModel(vBeta, lambda, -1, &sCopy);

A model in “compressed/short form” is stored inside the array vBeta. vBeta is
currently an array of size na. vBeta[j] is the weight of the model given to the
column of index sCopy.s[j] The short form is a very efficient way of storing the
model when combined with functions such as getLineXRequired. To convert the
model to the “normal/long form”, use: shortToLongModel(vBeta); Note that the
size of the “long form” of the model is nCol+1 because we need also to store the
offset(constant term) of the model. Inside this example the model is built using all
the blocks Bi (see figure 10 for a definition of the Bi’s). If we want to build a model
using all the blocks Bi except the block B4, we will do: buildModel(vBeta, lambda,

4, &sCopy); This allows us to perform easily a n-fold-cross-validation-error test.

• Test the model to see if we can remove column i without having a loss of efficiency.
This test may involves a n-fold-cross-validation technique. If this is the case, we can
drop definitively the column i: we do: keepVars(sCopy); (sA will be updated).

• choose another column i inside sA and go back to the first point of step 2.

As illustrated above, thanks the buildModel function, we can obtain easily up to nFold differ-
ent models based on the same set sA of variables. Using the function buildAverageModel, we
can compute one last model βaverage that is the average of these nFold different models. This
last model βaverage is a little bit less performant than the other models but it is a lot more stable.

To summarize, there is at least nFold+3 different models based on the same set sA of variables:

• The model that is produced by the forward stepwise LARS algorithm when searching
for informative variables inside the stepwise iterations. This model is suboptimal (see
remark about “greedy” algorithms to know why). You can access this model through the
isStoppingCriteriaTrue function.

23

• The model given by the function buildModel(·, ·,−1): this model is using all the blocks
Bi inside the creation set.

• The models given by the function buildModel(·, ·,i): these models are using all the the
creation set minus the block Bi. There are nFold models of this type (i = 0, . . . ,nFold-1).

• The model given by the function buildAverageModel that is an average of the nFold

models computed using a n-fold-cross-validation technique.

If you give λ = 0 as second parameter of the buildModel function, no model stabilization
through the ridge technique is performed. If you give λ∗ =lambda as second parameter of
buildModel, the optimal λ∗ value stored in lambda is used to stabilize the model. Each time
you remove a variable from the model, you should recompute λ∗ =lambda: this is done through
the function minimalCrossValError.

Here are some more useful functions:

• larsFLOAT normalizedLinearCorrelation(int i, int j, int cv=-1);

This will return Cij : the linear correlation between variable i and j: Cij = Xt
iXj . The

result is normalized so that 0 ≤ Cij ≤ 1. If cv=4, then the block B4 is ignored while
computing Cij .

• larsFLOAT linearCorrelationWithTarget(int i, int cv=-1);

This will return ai: the linear correlation between variable i and the target y: ai = Xt
iy.

The result is normalized so that 0 ≤ ai ≤ 1. If cv=4, then the block B4 is ignored while
computing ai.

• static larsFLOAT apply(int n, larsFLOAT *line, larsFLOAT *model);

This computes
i<n
∑

i=0

line[i] ∗ model[i] + model[n] (usually n=nCol).

You get two examples of use when you download the LARS Library:

1. The source code of a matlab mex-file function based on the LARS library. This allows you
to use the LARS Library under Matlab. Due to limitation of Matlab, we have to set the
options orientation=‘C’ and memoryAlignment=0. Thus, the library will be rather slow
compared to a full C++ implementation. The classical ‘diabetes’ example is given (the
same one than inside the main paper on LARS). An evolution of the example example
illustrated in figure 8 is also given. This example is interesting because the FOS algorithm
fails on it. The final model of the FOS algorithm contains only one variable: the X3

variable. On the contrary, the LARS algorithm is able to find the right set of active
variables: X1 and X2.

2. The source code of a small C++ executable that solves the ‘diabetes’ example. The
‘diabetes’ data are stored inside an external .csv file. The last column of the .csv file is
the target. A very fast .csv-file-reader is provided.

About the LARS library

The functionalities of this library are still not completely documented. There are many other
functionalities linked to the correct usage of a “rotating” validation set (”rotating” means a

24

n-fold-cross-validation validation set). Currently, the documentation covers only the case of a
“rotating” test set.

The documentation does not cover the “dynamic variables” (see equation 21 about “dynamic
variables”).

The library allows you to construct second order, third order,... models very easily.

If memoryAlignment=1, all the matrix algebra are performed using an optimized SSE2 library. If
orientation=‘L’ and memoryAlignment=1, the computation time is divided by two compared
to memoryAlignment=0. In this case, it’s important to store the data “line by line” otherwise we
lose the “locality” of the computations. “Locality” means that all the data needed to perform
a large part of the computations are inside the (small) cache of the processor. From a memory
consumption standpoint, the “line by line” mode is better. For all these reasons, the “line by
line” mode is preferable to the “column by column” mode.

Inside the LARS algorithm, the Cholesky factorizations are performed incrementally as new
variables enter the model. The Cholesky factorizations are based on the paper “A revised Mod-
ified Cholesky Factorization Algorithm” by Robert B. Schnabel and Elisabeth Eskow. This
advanced Cholesky Factorization allows us to obtain high accuracy models even when close to
rank deficiency.

The optimization of the ridge parameter λ is performed using a modified Brent algorithm to
ensure global convergence. The optimization algorithm has been extracted from an optimization
library named CONDOR.

References

Some papers about the Fast-Orthogonal-Search:

• An introductory paper: “Application of Fast Orthogonal Search for the Design of RBFNN”,
W. Ahmed, D.M. Hummels and M.T. Musavi

• A complete thesis: “Fast Orthogonal Search For Training of Radial Basis Function Neural
Networks” by Wahid Ahmed

• An example why LARS is better than LASSO for ARMA models: ”A new Algorithm
for Linear and non-linear ARMA Model Parameter Estimation Using Affine Geometry”,
Sheng Lu, Ki Hwan Ju and Ki H. Chon.

• Some application of FOS:

– “Orthogonal Approaches to Time-series Analysis and System Identification”, Michael
J. Korenberg.

– “Spectral Analysis of Heart Valve Sound for detection of Prosthetic Heart Valve
Diseases”, Sang Huyn Kim, Hee Jong Lee, Jae Man Huh and Byung Chul Chang

25

An easy, experimental and fun paper about model stabilization via Ridge: “The refmix dataSet”,
Mark J.L. Orr.

A paper about Lasso: “Regression shrinkage and selection via the lasso”, Robert Tibshirani

A paper about LARS: “Least Angle Regression”, Bradley Efron, Trevor Hastie, Iain Johnstone
and Robert Tibshirani

Cholesky factorization is based on the paper “A revised Modified Cholesky Factorization Algo-
rithm” by Robert B. Schnabel and Elisabeth Eskow.

A very good advanced recoding: “1-Dimensional Splines as Building Blocks for Improving Ac-
curacy of Risk Outcomes Models” by David S. Vogel and Morgan C. Wang.

