Fast Orthogonal Search For Training Radial Basis

Function Neural Networks

By Wahid Ahmed

Thesis Advisor: Donald M. Hummels, Ph.D.

An Abstract of the Thesis Presented in
Partial Fulfillment of the Requirements for the

Degree of Master of Science (in Electrical Engineering).

August, 1994

This thesis presents a fast orthogonalization process to train a Radial Basis
Function (RBF') neural network. The traditional methods for configuring the RBF
weights is to use some matrix inversion or iterative process. These traditional
approaches are either time consuming or computationally expensive, and may not
converge to a solution. The goal of this thesis is first to use a fast orthogonal-
1zation process to find the nodes of the RBF network which produce the most
improvement on a target function, and then to find the weights for these nodes.
Three applications of RBF networks using this fast orthogonal search technique
are presented. The first problem involves characterization of an analog-to-digital
converter (ADC), where the goal is to build an error table to compensate the er-
ror generated by the physical conversion process of ADC. The second problem is
a simple pattern recognition problem, where the goal is to classify a set of 2 di-
mensional and 2-class patterns. The final problem involves classification of human
chromosomes, which is a highly complicated 30 dimensional and 24 class problem.
Experimental results will be presented to show that the fast orthogonal search
technique not only outperforms traditional techniques, but it also uses much less

time and effort.

Fast Orthogonal Search For Training Radial Basis

Function Neural Networks

By
Wahid Ahmed

A THESIS
Submitted in Partial Fulfillment of the
requirement for the Degree of
Master of Science

(in Electrical Engineering)

The Graduate School
University of Maine

August, 1994

Advisory Committee:

Donald M. Hummels, Associate Professor of Electrical and Computer Engi-
neering

Thesis Advisor

Mohamad T. Musavi, Associate Professor of Electrical and Computer Engi-
neering,

Fred H. Irons, Castle Professor of Electrical and Computer Engineering,

Bruce E. Segee, Assistant Professor of Electrical and Computer Engineering.

11
ACKNOWLEDGMENTS

Abundant thanks are due to those who, in one respect or another, have
contributed to this project.

First, I am greatly indebted to my family for their continued support and
encouragement. Without them I couldn’t make it this far.

I especially wish to express my sincere gratitude to my thesis advisor,
Dr. Donald M. Hummels for his patience, guidance, encouragement, and time.
Without him this thesis would not have been completed. I envy his sincere, en-
thusiastic approach.

I express my sincere appreciation to Dr. M. T. Musavi. I owe him every-
thing I know in neural networks. He gave me the first lesson on neural networks,
and he has continued to support my neural network research until now. I have
learned a lot just by working with him. I admire his unstoppable desire for im-
provement in every aspect. Lots of thanks goes to him.

My sincere appreciation goes to Dr. Fred H. Irons for his inspirational dis-
cussions, for his help in understanding the analog-to-digital converters, and for
providing constructive criticism for this thesis.

I am grateful to Dr. Bruce E. Segee, for his constructive participation in
my advisory committee.

I would like to thank everybody I worked with here in the Electrical and
Computer Engineering Department. Thanks goes to, Bruce Littlefield for sharing
his expertise with me in networking, loannis Papantonopoulos and Richard Cook
for ADC research, and my coworkers this summer Norm Dutil, Jon Larabee for
the greatest working environment and last but not least, Sekhar Puranapanda for
a lot of laughs.

Finally, I wish to thank all my friends and faculty for making such a warm

environment during my stay at the University of Maine.

CONTENTS

LIST OF FIGURES

1 Introduction
1.1 Problem Statement
1.2 Review of Previous Work

1.3 Thesis Overview

2 Radial Basis Function Neural Network
2.1 RBF structure.o oo
2.2 Solving for the Weightso
2.2.1 Gradient Descent Solution
2.2.2 Cholesky Decomposition
2.2.3 Singular Value Decomposition
2.2.4 Orthogonal Search

3 The Fast Orthogonal Search
3.1 Mathematical Development
3.2 Fast Orthogonal Search Algorithm

3.3 Computational Evaluations

4 Applications of the RBF Network
4.1 Analog to Digital Converter Error Compensation
4.1.1 Problem Description
412 Results.
4.2 A Simple Pattern Recognition Problem
4.3 Classification of Chromosome
4.3.1 RBF Network for Chromosome Classification
4.3.2 Results and Analysiso

5 Conclusion
5.1 Summary

5.2 Future Work

A PROGRAM LISTING
A1 Fast Orthogonal Search

B Preparation of This Document

BIOGRAPHY OF THE AUTHOR

111

v

15
15
21
24

25
25
25
28
37
44
44
46

50
50
51

56
56

62

63

2.1

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14

4.15

4.16

v

LIST OF FIGURES

Network structure for the Radial Basis Function Neural Network. . 5
ADC Compensation Architecture 26
The domain of the error function. 27
An error table.o 29
Measure of SEFDR.o 30
SFDR for the uncompensated, compensated by proposed technique,

and compensated by singular value decomposition. 32
The sum squared error for the network as each node gets added in. 33
The selection of 50 nodes out of 500 initial nodes. 34
The selection of 50 nodes out of the 4 layered nodes. 36
The training sample for the 2D 2-class problem. 38
The percentage error vs o for the 2D 2-class problem. 39
The output surface of the RBF for the 2D 2-class problem. 41
The sum squared error of the training samples for the 2D 2-class

problem. 42
The node selection process of the orthogonal search technique. . . 43
Network structure for the RBF Network for Chromosome Classifi-

catlon. L 45
The sum squared error for training class 1 of the Chromosome prob-

lem. . . . L 48

The percent error of the network for different numbers of the initial
node selectiono 49

CHAPTER 1

Introduction

1.1 Problem Statement

The neural network is the most exciting interdisciplinary field of this decade.
The widespread applications of neural networks not only proves their success but
also illustrates the necessity of finding the best network to solve a problem. It seems
like the general agreement is that no single network can solve all our problems;
we need different networks to solve different problems. Back Propagation (BP)
[1], Radial Basis Function (RBF) [2, 3], Probabilistic Neural Network (PNN) [4],
Kohonen’s Self Organizing Map [5] are namely the few well known neural networks.

The growth of neural networks has been heavily influenced by the Radial
Basis Function (RBF) neural networks. The application of the RBF network can
be found in pattern recognition [3, 6, 7], function approximation [2, 8], signal pro-
cessing [8, 9], system equalization [11] and more. The consistency and convergence
of the RBF network for the approximation of functions has been proven [10]. A
large amount of research has been also conducted on the architecture of the RBF
network. The two most important parameters of a RBF node, the center and the
covariance matrix, have been examined thoroughly [6, 11, 12]. A major issue han-
dled by these researchers is the reduction of the number of nodes. This reduction
involves clustering of the input samples without any consideration of the target
function, or the convergence of the weights. The weights (the most significant
component of any neural network) of the RBF network were left untouched by
most of the researchers. This oversight is not ignorance but a confidence on the
traditional approaches. Like many other things, the traditional approaches just
do not work all the time. For RBF weights, the traditional approaches only work

when the training samples are well behaved. In real life, the training samples

are not well behaved causing major problems for finding the RBF weights. The
issue of this thesis is to find a set of most significant nodes and their weights for
a given network, using a technique that considers both the structure of the input

parameter space and the target function to which the network will be trained.

1.2 Review of Previous Work

The traditional approach to design an RBF network is to first select a set of
network parameters (number of nodes, node centers, node covariances) and then
find the weights by formulating the network by solving a least squares (LS) formu-
lations of the problem. Various techniques may be used to solve the LS problems
including Singular Value Decomposition (SVD), Cholesky Decomposition, and the
Gradient Descent approach. These traditional methods have a variety of problems,
which will be discussed later. Orthogonal decomposition techniques may be used
to provide an orthogonal basis set for a LS problem. An orthogonal scheme was
used by Chen et. al. [13] in RBF networks to simultaneously configure the struc-
ture of the network and the weights. The orthogonal search technique presented by
Chen is cumbersome, and requires redundant calculations making it non-suitable
for reasonable size networks.

A similar fast orthogonal search technique has also been developed by Ko-
renberg et. al. [14, 15] for nonlinear system identification. This procedure also
includes redundant calculations and was highly customized to the problem of find-
ing the kernels for a nonlinear system with random inputs. This thesis presents
an efficient fast orthogonal search eliminating the redundancy of [13, 14]. The
resulting algorithm is directly applicable to RBF networks and a wide variety of

other LS approximation problems.

1.3 Thesis Overview

This thesis has been organized in five chapters. Chapter 2 provides the RBF
architecture along with some traditional approaches to configure the weights. In
Chapter 3 the mathematical development, and a simple algorithm for the proposed
fast orthogonal search technique will be presented. Several applications of the
RBF network, using the fast orthogonal search technique, will be used to evaluate
the technique in Chapter 4. Chapter 5 concludes the thesis by providing a brief

summary of this research and suggesting some future research directions.

CHAPTER 2
Radial Basis Function Neural Network

2.1 RBF structure

The RBF Neural Network gained its popularity for its simplicity and speed.
RBF is a simple feed forward neural network with only one hidden layer, and
an output layer. The hidden layer is the backbone of the RBF structure. The
hidden layer consists of a set of neurons or nodes with radial basis functions as the
activation function of the neuron, hence the name Radial Basis Function Neural
Network. A Gaussian density function is the most widely used activation function.
The output layer is simply a summing unit. This layer adds up all of the weighted
output of the hidden layer. Figure 2.1 illustrates the RBF network.

The following equation gives the output of the RBF network

§=f() = gwkqﬁk(f); (2.1)

where

o) = (27r)—p/2 |gk|—%e—%(f—é’k)zk_l(f—é’k)T. (2.2)

Above, N is the number of network nodes, p is the dimensionality of the input
space &, and wg, ¢k, and Y, represent the weight, center, and the covariance matrix
associated with each node. In the above equation the output of the network is a
scalar quantity for simplicity, but the network can have any number of outputs.
In supervised learning, where input output pairs (Z,y) are presented to
“teach” the network, the objective of training is to configure a set of weights, wy,
such that the network produces the desired output for the given inputs. In that
case, we say that the network has learned. So if (Z,y) is an input output pair,

where Z is the input and y is the desired output, then the network should learn the

Figure 2.1: Network structure for the Radial Basis Function Neural Network.

mapping function f, where y = f(&). The training is done using the M training
sample pairs (&1,y1), (Z2,¥2), - (Zm,ynm). The output vector containing the M

outputs of the network can be written using the following matrix form,

= o, (2.3)

Q>

where ¢ is an M dimensional vector and w is the N dimensional weight vector.

The above quantities aregiven by

. - T
Yy = 1 Y2 - Unm])
- T
W= i w, Wy - wN :| ?
$1(Z1) #2(1) - on(Z1)
= : : : : (2.4)
| $1(@m) $a(Zm) - ¢n(Tm)

¢:(Z;) is the output of 7** node for the j** input vector #;. So each column of the
® matrix contains the output of a node for all M training samples.

The problem of finding the network weights reduces to finding the vector
w which makes the network output g;_’ as close as possible to the vector of desired

T

network outputs ¥ = [y1 ya ---ym|'. Generally, W is determined by finding the

least square (LS) solution to

&5 = 7. (2.5)

The method for finding the solution to (2.5) depends in large part on the structure
of the network being designed. One popular scheme is to center a node of the
network on each of the input training samples (¢, = &,k = 1,2,---, N). In this
case the matrix ® is square, and the weights are given by w = ® 714 provided that
® is nonsingular. However, calculation of ®~! is often problematic, particularly

for large networks.

Often, the number of nodes is much less than the number of training sam-
ples. In this case the system of equations (2.5) is overdetermined, and no exact
solution exists. Various alternative methods of finding the weights in this case are

discussed in the following sections.

2.2 Solving for the Weights

The training phase of any neural network is the most significant job for
designing the network. The network must “learn” as accurately as possible and at
the same time it should be able to generalize from the learned event. Training of a
RBF neural networks involves setting up the node centers, the variance or widths,
and most importantly the weight of each node. There has been extensive work on
how to select the node centers and covariance [2, 3, 4, 6, 16, 17]. We assume in this
section that these values have been selected, and that we must find an appropriate
selection for w. A number of traditional schemes for this selection are reviewed in

this section, along with a brief summary of advantages and disadvantages.

2.2.1 Gradient Descent Solution

The first approach in this thesis to solve the weights is the Gradient Descent
solution. This approach gained its popularity due to its similarity with algorithms
used to train the Back Propagation (BP) neural networks [1, 18, 19]. The solution
is found by feeding back the output of the network to update the weights. This
updating continues until the network output meets some error criteria. The error
criterion most widely used is the sum squared error (SSE) or the mean squared
error (MSE) between the network outputs and the desired output. The following

equation describes the weight updating rule.

wpt = wzld + aAwy, (2.6)

where « is a constant-known as the “learning rate”-between 0 and 1, and

Awg = () (yi — 9a). (2.7)

In matrix form the updating rule is:

T = 5 4 aAw, (2.8)
where
Ad = o (57— 7). (2.9)

This rule is also widely known as the “delta rule.”

An advantage of this method is that it can be used without storing the
complete ® matrix. For a large network where memory to store ¢ can be an issue,
this technique can be used easily by generating only one row of the ¢ matrix at a
time.

A major disadvantage of this approach is that it’s very slow since an iterative
process is involved. The solution may not even converge. The initial weights are
also a major factor, and for many cases there may be no procedure for correctly
choosing a set of initial weights that will provide a solution. If the ® matrix
1s singular, which is always possible if the network is large, the procedure may
not converge at all, or converge to a erroneous solution. The singularity of the
® matrix occurs when the selection of nodes are either separated too closely or
the variances are too large. So choosing the nodes, their variance, and the initial

weights becomes a major problem.

2.2.2 Cholesky Decomposition

Cholesky Decomposition or factorization is also a widely used technique for
finding the least squares solution to a system of linear equations. The vector w

which gives the least squares solution to (2.5) must satisfy the “normal equation”

which is given by
o1y = o7 dw. (2.10)

The symmetric matrix (7 ®) is commonly refered to as the Gram matrix. The
symmetry of the Gram matrix may be exploited to give a numerically efficient
technique for solving (2.10) without explicitly calculating ($7®)~!. Cholesky fac-
torization accomplishes this by decomposing the Gram matrix. The decomposed

form of the Gram matrix is

eTe = Uy, (2.11)

provided that the Gram matrix is nonsingular. Here U is a right triangular or
upper triangular matrix [20, 22]. Now by substituting equation (2.11) into equation
(2.10), we obtain,

UTUw = @7y, (2.12)

The above equation can be written as,
Utz = o7y, (2.13)

where

7= Uu. (2.14)

Equation (2.13) can be easily solved by the method of forward substitution since
U7T is a lower triangular matrix, and (2.14) can be easily solved by the method
of back substitution since U is an upper triangular matrix [20]. Algorithms for
finding the Cholesky Decomposition are given in [23].

The major advantage of this technique is that it is very fast compared to
solving by inverting the Gram matrix and then doing several matrix multiplica-
tions. However, this technique has several significant drawbacks.

The first assumption for the Cholesky Decomposition is that the Gram ma-

trix is nonsingular, in other words det(®7®) # 0. If the number of nodes are

10

large the Gram matrix could be very close to being singular. The singularity of
the Gram matrix introduces instability for the weights, and may result in approx-
imations that do not generalize well to inputs near the training samples. When
the weights for the RBF neural network are selected in this manner, the assign-
ment of the node centers and the covariance matrices becomes crucial, since these
parameters determine the structure of the ¢ matrix.

A second problem is the complexity of the resulting network. The resulting
network still has the same structure and size as the original (®) network; that
is all the nodes of the network are used. This procedure does not eliminate the
redundant nodes from the network making the resulting network computationally
inefficient. One would prefer a procedure to select only nodes which contribute to

the approximation.

2.2.3 Singular Value Decomposition

The Singular Value Decomposition (SVD) provides a method of alleviating
the numerical instability which exists for nearly singular matrices. For any M x N

matrix, ®, the SVD is given by
& =UAVT, (2.15)

where U is an M x N matrix, A is a N x N diagonal matrix, V is an N x N
matrix, and U and V are orthonormal (UTU = I,VTV = I). The columns of
U are eigenvectors of (®®7), and are called the left singular vector of ®. An
important property of the SVD is that the matrix U provides an orthonormal
basis set for the ® matrix. The columns of V' are the eigenvectors of the Gram
matrix (®7®), and called the right singular vectors. A is a diagonal matrix, where
the diagonal elements are the square root of the eigenvalues of the Gram matrix

(#7®). These diagonal elements are called the singular values.

11

By substituting the SVD of @, the equation (2.10) can be rewritten as
VAUTUAVT G = VAUTY. (2.16)

By using the fact that UTU = VTV = I, the solution for the weights is

N T >
T=VAUTF =) % (u/\y> i £ 0, (2.17)
i=1 i

4; and U; are the 7" column vector of the U and V matrix respectively, and),
is the " singular value (diagonal element of A). The term VA~'U7T is most
commonly denoted by ®#, and called the pseudo inverse of ®. Note that in (2.17)
the summation is carried out only over non-zero singular values. If the original
® matrix is singular, one or more of the singular values will be zero. In this case
(2.5) does not have a unique solution - there are an infinite number of solutions w
which will provide the same (minimum) mean-square error. By carrying out the
sum only over non-zero singular values, we are adopting the solution for w which
has minimum length [23].

The singular values of a matrix are used to determine its proximity to
singularity. Equation (2.17) shows how a nearly singular matrix (small A;’s) can
make the solution for w blow up. One method of improving the numerical stability
of the solution is by setting a threshold on the singular values. One can then throw
away the components of the solution contributed by low singular values, ensuring
that the weights do not blow up. The matrix which is obtained by setting the
smallest values to zero may be shown to be the best low rank approximation to
the original ® matrix [20]. By dropping the smallest singular values from one
solution, we are replacing an exact (but unstable) solution to the least squares
problem by an approximate (but well-behaved) solution.

Although the SVD provides the best low-rank least square approximation

for the weights, there exists some disadvantages. The following provides a list of

12

disadvantages of the SVD procedure.

1. SVD is slow and computationally expensive. It requires computing eigenval-
ues and eigenvectors for large matrices.

2. The threshold for elimination of singular values is hard to set. There are no
clear approaches to select the threshold.

3. The approximation which is being made depends only on the structure of the
network (®) and is completely independent of the vector of training target
values y. One would expect an improved procedure could be developed which
takes into account the function to be approximated.

4. Although the solution is obtained by approximating ¢ by a singular matrix
(implying fewer than N nodes) the vector w generally does not contain any
zero elements. Hence, all N nodes of the network must be implemented. The
network complexity is virtually identical to that obtained using the Cholesky
Decomposition or gradient descent methods.

2.2.4 Orthogonal Search

Another technique for solving the least squares problem is the orthogo-
nal search technique. The main part of the orthogonal search technique involves
decomposing the ® matrix to an orthogonal basis set, and then using the decompo-
sition to solve the normal equation (2.10) to find the weights. The decomposition
of ® is given by

® =QR. (2.18)

Q is a M x N matrix with column vectors given by the orthogonal basis vectors
of ®, and R is an N x N right or upper triangular matrix. The orthogonalization
of ® can be found by using the Householder transformation [20, 24], or the Gram-
Schimidt orthogonalization procedure [13, 20, 21, 25].

The weights can be found by substituting (2.18) into equation (2.10), and
using the fact that Q7Q = I we get

RTRw = &7y (2.19)

13

The above equation can be solved for the weight vector by the method of forward
substitution, and backward substitution [20] as described in section 2.2.2.

This procedure does not work when @ is singular, and it does not give any
insight about the network structure. A more useful approach is to use the orthog-
onal basis vectors to choose a set of nodes which reduces some error criteria for
solving the least squares problem. Chen [13] presents one such algorithm, derived
from the Gram-Schimidt procedure, to select the most ‘significant’ nodes one by
one. In [14] a similar algorithm was also presented to select basis function one
by one, with emphasis on the characterization of nonlinear systems with random
inputs. Korenberg et. al. [14] presents an improved, fast version of the orthogonal
search technique described in [26].

During each step of Chen’s algorithm [13], the following procedure is used
to search a set of candidate nodes to determine which node will be added to the

currently selected set.

1. For each candidate, find the component of the basis vector associated with
that node which is orthogonal to all of the currently selected nodes. Either
the Gram-Schimidt or the Householder technique may be used. Call this

component ¢;.

2. For each candidate, evaluate the projection of the target vector ¥ onto the

unit vector in the direction of the orthogonal component

gl

This component gives the length of the change in ¥ which will result if the

1** vector is added to the currently selected set.

3. Choose the node which gives the largest value of p; - this is the node which

will provide the greatest reduction in the mean-square error.

14

The importance of choosing the nodes one by one is significant in several

aspects. The following is a list of some advantages.

1. Selection of nodes one by one provides an insight to the approximation prob-
lem, and the network structure. This insight can be used to further modify
the network.

2. This selection procedure will let us meet some physical limitations. Nodes
mean connections, so a reduction of nodes will provide a corresponding re-
duction of connections which can be very useful for hardware applications.

3. This procedure does not involve the selection of an arbitrary thresholding
like the SVD method which can affect our solution. The desired number of
nodes can be easily chosen just by looking at the error behavior.

The orthogonal search method is very useful, but not so practical. The
method has not been widely accepted primarily because of the computational com-
plexity. The procedure is not generally practical for networks of reasonable size.
However, the above algorithm may be shown to be extremely redundant making it
computationally expensive. In chapter 3 an algorithm will be presented to imple-
ment the orthogonal search technique efficiently. The algorithm will perform the
same orthogonalization procedure without explicitly calculating the orthogonal set

making it much easier to implement.

15

CHAPTER 3
The Fast Orthogonal Search

In chapter 2 some traditional approaches to solve the least square problem were
discussed. The techniques discussed have a variety of problems for finding the
weights for a RBF network. A major issue that had been left untouched is that of
how many nodes are really needed to train a RBF network and what is the jus-
tification. Several clustering algorithms [6, 7, 12, 27| have been developed which
could reduce the number of nodes, but these clustering algorithms by no means
suggest whether the network will converge to a stable set of weights or not. In
this chapter a simple, fast algorithm will be developed to find a set of weights that
are best for the given network, and this solution of weights will indeed suggest the
number of nodes needed by the network. The procedure may be shown to be a
computationally efficient procedure for implementing the orthogonal search tech-
nique of section 2.2.4. Similar fast orthogonal search techniques have been used
by Korenberg [14, 15] for time-series analysis, system identification, and signal

identification problems.

In section 3.1 the fast orthogonal search technique will be developed math-
ematically. In section 3.2 a simple algorithm will be presented to implement the

technique. A summary of computational requirements will be given in section 3.3.

3.1 Mathematical Development

The problem of solving for the RBF weights from the equation (2.3) is the
issue of this section. Like the orthogonal search technique, during each iteration
of the algorithm a set of candidate nodes will be considered to identify which node
will provide the best improvement to the approximation of . This node will be

added to the network, and the procedure continues until either an error criterion

16

is met or the number of nodes in the network reaches a desired value. Unlike the
orthogonal search technique, the orthogonal basis set associated with the selected
set of nodes is never explicitly calculated, significantly reducing the computational
burden of the procedure. The Cholesky decomposition discussed in section 2.2.2
is the backbone of the proposed fast orthogonal search. Let’s define ggj as the M
element column vector representing the output of the j** node for M number of
samples. If the job is to consider each node individually, let’s also define {4—5’]} as
the set of node functions to be considered, and let ¢ denote the matrix containing
the ggj for the currently selected nodes. Let ®¥® have Cholesky decomposition
®T® = UTU. If a candidate function 4—5’]- € {g;]} is added to the ® matrix, the
Cholesky decomposition will be modified by
o7 ut o U &

o e a]- o6l g)| o

—

Z
where |’ | denotes the new column of the U matrix. For the time being, assume
3
that z; and &; are known for each 4—5;- € {4—5‘]} (We must still show how Z; and ¢;
should be updated as the & matrix changes.)
To select the appropriate q—S‘j, we need to look at how the selection of a
node changes the estimate of ¥, gAj’ We prefer to select nodes which produce large

changes in gAj’ For the modified ® of the above equation, the normal equation of

the form (2.10) can be written as

T T

A R (32)
J J

By using the decomposition of equation (3.1) in the above equation, we obtain

17

ut o U z; | | o1y
w; = - . (33)
;& 0 ¢ 79
As before in Cholesky decomposition equation (3.3) can be solved for Z; by the

method of forward substitution where 2j is

U
0 &

—

Zj:

;. (3.4)

Applying forward substitution in equation (3.3), we obtain

Zo
Z’j = |: 1 —’T T } 7 (3'5)
5(‘}5] Yy—x; ZO)

where 2z (from U%z, = <I>T37) is the old solution for 2z’ and is the same for all the
g{S’j candidates. So the only change in Z; due to adding 4—5’]- is the addition of the the
last component of the vector. Notice that this term is a scalar quantity and for
simplicity let’s define

a; = ‘l—s?y - 5?2—’0- (3.6)

Now the estimate for the weights can be found by solving

U Z
=] . (3.7)
0 ¢ &

We define the changes in w;, Awj, using the equation

Wo
@; = + [A,] , (3.8)
0

where 1y is the solution to @7 ®w, = 72, before ® is modified (Uwy = 7). This

18

gives
U z; . 0
ij: o . (39)
0 & &

The new estimate of ¥ is then,

~

37,:[@ &s',-]wj:zf’w[@ q’S}]Aﬁj, (3.10)
where gj'o = ®uj is the old estimate. Let’s define Ay; = [@]Aﬁj. The best
node to select out of {g;]} is the node which contributes the most to the {7 (has
the largest Ay). The length squared of Ay is
@T
|A7I? = AFFAG; = 8 | [o 4,] AT, (3.11)
J
Now, by substituting the modified Cholesky decomposition of equation (3.1) in the
above equation we get,
g o | U o U z; .
|Ay;]|" = Aw; . Aw;. (3.12)
Z;y fj 0 fj

Taking a step farther and applying equation (3.9) to the above equation we get

2 2
U Z; 0 o?
1Ag]* = Tlaw) = ||l = o (3.13)
0 & & j
Rewritting the above equation,
2
(o'
1AG511° = = (3.14)
&

The equation (3.14) is very important since it determines how much im-

provement we get by adding the new node qz—S‘j. This equation will be the decision

19

criterion for including a node. So if we have to choose from the collection {(,;j},
the wisest choice would be to choose the node that gives the largest value of a? / sz

Now we need to find how all the o, &;, and z; changes as ® gets updated by a node.

To describe the updating rules, we introduce the following notation. Any
quantity with ™ on top denotes the updated version of that quantity. That is, x is
the value of x after $k has been added to the ¢ matrix. Here x can be a matrix,
a vector or a scalar quantity, and q—S’k is the k** node that has been selected to be

the best choice from the set {gg]} So using this notation we have,

i [ea)
7 - U 7z
0 &

We need to find ¢, {zj, and f;j in terms of aj, ¢;, &, ak, &k, and Zg.
The terms E,- and a::']- form the Cholesky Decomposition of the Gram matrix

after the modification: that is by multiplying out the form of equation (3.1)

¥ a7, | [omo 073
B =\ p. - m. |- (3.15)
P ¢j ¢j¢j .’IJ]-U j‘|‘:IJJ-.’IJj

To get a”;j we must solve, ﬁTa::’j = <i>T<;—5‘j, that is,

vtos o ¢ (3.16)
:IJJ': - 5. .
7 & b

By using the methods of forward substitution and using the fact that Z; is the

20

solution to UTZ; = <I>T<;—S’j, we get

—

Zj

(9% b5 — T4 ;)

S
|

(3.17)

For simplification the last component of a%:']- will be called §;, i.e. B; = i((ﬁf(ﬁ —

Z1Z;). We obtain & by using the last equation (EJZ + é’fé} = 5}"4_5}) of (3.15),

2 ry =hs
LT 7 =T = 2
= ¢;¢; —T;T; -0
g-¢-p, (3.18)

where £ = 5}"4@} — iz?fj is the value before q—S’k is added to 9.

Finally &; can be found from equation (3.6):

~ T I3
a; = ¢;y—; 2
= ¢J’y_[m? ﬁ]]
ag
&k
= ¢jy—$j O_f—k
arB:
& = a; — 2405, (3.19)
&k
where aj:ggfg'—iz?io.

The development of the fast orthogonal search comes down to only four
important equations: (3.14, 3.17, 3.18, 3.19), these equations are boxed above. To
select nodes one by one, we look first at the equation (3.14) to get the highest
contributor, and then update the important terms of equations (3.17, 3.18), which

21

are also terms in U, due to inclusion of the most important node, and finally
update (3.19) so that the next important node can be selected. This selection
process can keep repeating until the desired number of nodes has been selected, or
an error criterion has been met for the estimate. In the next section a very simple

algorithm will be presented to implement it to find the weights.

3.2 Fast Orthogonal Search Algorithm

In section 3.1 the mathematical background was given for the fast orthogo-
nal search technique. Even though the development of the technique looks compli-
cated, the implementation of the technique is not so. In this section an algorithm
will be presented for the technique, which will make it much easier to implement.
The most important equations that we need to worry about are the ones boxed in

section 3.1. Let’s look at the RBF equation (2.3) of the matrix form again,

= & (3.20)

Q>

We need to solve this equation for weights w. The matrix ¢ = [$1$2 e $N] is the
output of all N nodes for M samples. For the orthogonal search the nodes (or the
columns gz) will be added one by one in an order such that the node which gives
highest improvement, as in equation (3.14), is given the highest preference. The

following algorithm presents the appropriate steps to implement the technique.

1. Put all the columns of ® (g{S’i’s) in the set {g;]}

Initialization of some variables by setting,

—T—’
Q; = ¢1j ’
—»,I, —
61.2 = ¢1j 1)
z; = [0x1 wvector],

U = [0x0 matriz], (3.21)

22

where, 1 =1,2,--- N,

Set Error = 47y, and Number node_selected = 0.

. The iteration begins here.

Find the maximum value of a?/¢2 for all i. Let’s say the maximum is at

1= k.

. Now set,

- U %
U= . (3.22)
0 &

. Now we update the Z; as in equation (3.17), by finding 5; first,

1 7 =
Bi= (b b — @) (3.23)
&k
and then,
- z;
T = . (3.24)

Bi

. We also need to update ¢ as in equation (3.18),
&=¢6-p6 (3.25)

. Finally we update « as in equation (3.19) by,

g arb
a; = oy & (3.26)

In the above, from step 4 to step 6 updating is only required when 2 # k.

. Keep repeating from step 4 through step 6 until all the nodes in the set {q—S‘]}
have been updated.

23

8. Delete the k™" node from the set {g;]}

9. Increment the Number_node_selected by one, and set Error = Error —
a; /& If Error is less than some error threshold, or the Number_node_selected
is equal to the desired number of nodes then go to step 10, otherwise go

through the steps 2 - 8 again.

10. At this stage we have a U matrix giving the Cholesky decomposition of ¢
oTe = UTU. (3.27)

Note that here ® does not contain the response from all nodes as in section
2.2.2, ® is formed only from the set of nodes that reduce the sum squared
error of 3;_' We can use the equation above in the normal equation (2.10), and
then solve for the weights of the selected nodes by the method of forward

substitution, and backward substitution.

The algorithm presented in this section not only implements the technique
to find the weights of a given network, but also allows the user to select the number
of nodes. This selection has physical significance since there may exist hardware
or software limitations on implementing nodes. The algorithm finds the best fixed
number of nodes rather than just an arbitrary choice of nodes. If the number of
nodes is not an issue than one may be able to find a better network by choosing
a sum square error threshold. Also we can look at how the error is behaving as
the nodes have been added to the network. This provides an indication of whether
addition of a node really makes a difference or not. A subroutine which implements

the above algorithm is included in Appendix A.1.

24

3.3 Computational Evaluations

This section will compare the procedure of fast orthogonal search technique
presented in this chapter to the orthogonal search techniques presented in section
2.2.4 in terms of computational complexity. Here, the complexity of an algorithm
may be evaluated by counting the number of multiplications required to imple-
ment the training procedure. The number of multiplications required for the fast
orthogonal search described by Korenberg [14] is given by O(SNM + S*N). Here
S 1s the total number of nodes selected, N is the total number of initial nodes, and
M is the total number of training samples. For the Orthogonal search technique of
section 2.2.4 (developed by Chen [13]) the total number of multiplications required
is O(S2NM). The fast orthogonal search technique developed in this chapter re-
quires O(SN M+ S%N) multiplications. So the fast orthogonal algorithm presented
in section 3.2 is not only simple but also fast. It requires a factor of S fewer com-
putations than the method presented in [13], and is either comparable to or faster

than Korenberg’s algorithm of [14].

In the next chapter some applications of the RBF network will be given.
The technique will also be evaluated against standard techniques, and an analysis

of different aspects of the network will be presented.

25

CHAPTER 4
Applications of the RBF Network

The application of RBF neural networks is widespread. RBF networks have been
successfully applied in pattern recognition [3, 6, 7], function approximation [8], time
series prediction [8], signal detection [9, 28| and many other important problems.
In this chapter, several applications of the RBF network using the fast orthogonal
search for training will be given, and an analysis of the performance of the network
will be provided.

In section 4.1 the application of RBF networks in analog to digital converter
(ADC) error compensation will be presented. In section 4.2 a simple pattern
recognition problem will be handled, and finally in section 4.3 the application to

chromosome classification will be presented.

4.1 Analog to Digital Converter Error Compensation

The error compensation of ADC’s has been undergoing research for several
years [29]. Although the error introduced by an ADC is much smaller than the
signal amplitude in general, the compensation of an ADC may be used to improve
the linearity of the converter. For many spectral analysis and signal processing
applications, the linearity of the converter is a critical specification. Despite the
heavy growth of neural networks, few have attempted compensation using neural

networks.

4.1.1 Problem Description

The error correction for an ADC is to eliminate frequency dependent dis-
tortion introduced by the converter [30]. To cope with this frequency dependent
distortion Hummels et. al. [30] present a dynamic compensation procedure. This

dynamic compensation was based on the the converter output and some estimate

26

Input
Signal X;
——1 ADC l >
! ! Error Z.
' Y Correction|—» Compensated
1
L Derivative| ¥ | Table Samples
Estimator

Figure 4.1: ADC Compensation Architecture

of the slope of the input signal. Figure 4.1 illustrates the compensation procedure
where the values of the error function stored in memory, are accessed by the state
and slope of the input signal.

In figure 4.1, z; is the :** output of the ADC, and y; is the estimate of the
derivative of the input signal at the time that the sample z; is taken. z; represents

the compensated signal given by

2 = Ty — e(mi;yi); (4-1)

where e(;,y;) is the unknown error function to be tabulated.

The job of the RBF neural network here is to determine the error function,
e(z;,yi), given the output of the converter and the estimated slope of the input
signal. To train the RBF neural network an ADC calibration procedure is required
to get input-output pairs for training. In [30] the detailed calibration procedure
is presented. In brief, an ADC is excited by pure sinusoidal calibration signals of
known frequency. The output of the converter is collected as a calibration data ;,
and an estimate of the derivative, y;, is found. Figure 4.2 shows the calibration
data versus the derivative of the input signal, in other words the domain of the
error function. In this figure each ellipse is constructed by a single signal frequency.

Since the error is due to the frequency dependent distortion, the target (or

the desired output of the RBF network) is the function which exactly compensates

slope

400

300

200

100

-100

-200

-300

-400

The calibration data

xxx%%%*%% Kksg Kok

xxxxxxxxx RRKHA K

SRRRIRHITIIIIH A s

AR

S . : "
SRR A IR HHoRRK
Sk ¥
PHRRI K SRR HHRHRHHHK X
¥
R sk ook RN

KKK KKK soRKK

50 100 150 200
State

Figure 4.2: The domain of the error function.

250

27

28

the harmonics which exist in the calibration data. The above described problem
can be represented by

FO(Z,)0 = F7. (4.2)

Here, F represent a Fourier Transform (FT) matrix, ®(Z,v) is the matrix form of
the output of the RBF nodes, and & and y are the calibrated state data and the
estimate of the derivative respectively. w is the weight vector of the RBF network.

For a more detailed discussion on equation 4.2, see [30].

4.1.2 Results

Calibration data was collected from a Tektronix AD-20 8-bit converter sam-
pling at 204.8 megasamples per second (MSPS). The data was then presented to
a RBF network to learn the harmonics. The RBF nodes of the network were
placed on training samples which were separated by a fixed minimum distance.
The covariance for each node is chosen to be diagonal with diagonal elements pro-
portional to the separation distance of the nodes. The ® matrix of the network
was constructed as in equation (4.2) with 300 nodes. Finally the weights of the
network were found by the fast orthogonal search technique presented in Chapter
3. The technique of orthogonal search was used to find the best 50 nodes and their
weights.

After training, an error table was constructed using the estimated function
e(z,y). Figure 4.3 shows the constructed error table. To evaluate the performance
of the table a measure of Spurious Free Dynamic Range (SFDR) was evaluated.
The SFDR was found by measuring the dB difference between the height of the
fundamental and the height of the highest spurious signal in the spectrum of the
ADC output as illustrated in Figure 4.4.

This measure is not a simulation, it is an actual measure done using a high
performance test bed and the same AD-20 converter. Raw data was collected by

driving the converter with a pure sinusoidal signal, and was compensated using

wahid 21:44 7/19/94

N
AN
e
2N
LSS
e e
SN
N

>
R X R
RN AKX XXXXXX
3:§§3::&3{1:‘33:‘:3::3:3‘:‘:o."N’m’o‘o’o X 4
R /T
\\“\\:\\8\‘:“‘““A‘.m:o‘o‘o‘o’o‘o 2 2R
WS ‘:: :‘:un» ZESNN
N
AN A58 AR
OSSR SR
N7 SN
0".\,‘.'.zq«.;;m/Z??///llqulZi: R
R, SRR
At
I

R
RN (N

X i
\ iy

7 /
it T

7

'l, U

Ui ittty
g il
i i
ljjjgp007" et
L)

Figure 4.3: An error table.

SRR
RN
AR

AR

State

300

29

magnitude of FFT

80 . . e . . o T I LIt Iyl N

60

 SFDR

40

-40 ' '
0

20 40 60 80 100
frequency (MHz)

Figure 4.4: Measure of SFDR.

30

31

the table built by the RBF network as in (4.1).

Figure 4.5 shows the SFDR versus various test frequencies. The table is
compensating the error by 10 dB or better throughout the Nyquist band. For
comparison, a table was built using the same RBF network structure, but the
weights were found using the method of Singular Value Decomposition (SVD)
discussed in Section 2.2.3. The SFDR for the SVD technique is also shown in the
figure 4.5. Even though the SFDR for both SVD technique and orthogonal search
technique are similar, the orthogonal technique has some added advantages. The
orthogonal technique is less time consuming than the SVD technique since the
SVD technique requires finding the eigenvalues and eigenvectors of large matrices.
The orthogonal technique gives the same performance with fewer nodes, providing
a way to discard the unimportant nodes. If we look at the sum squared error as
a node gets added in, we can make an intelligent decision about whether to add
more nodes or not.

Figure 4.6 shows how the error function decreases as each node is added into
the network. From this plot it is obvious that it may not improve the performance
at all after the 30** node had been added. In comparison, use of the SVD technique
requires inclusion of all 300 nodes.

For many problems, insight into the importance of various nodes may be
gained by examining the sequence with which nodes are added to the network.
Figure 4.7 illustrates this selection process. The initial nodes are presented in the
figure by ‘o’ and the selected nodes are presented by ‘*’. Next to each selected node,
a number is printed which indicates the order in which the nodes are selected. This
figure demonstrates the most important regions of the domain of this problem.

To get a better insight into the problem, a different procedure was used
to place the initial nodes. The node centers of a RBF network were placed in
layers of arrays of nodes. The first layer includes only 4 nodes on 4 corners of

the input space of the ADC calibration data. 4 x 4 array of nodes were placed on

32

70 ! ! ! !

chpensated ursing FQS Vmethocrl

45+ R 1
—*— compensated using SVD method
— — — uncompensated
40 1 1 1 1
0 20 40 60 80 100
frequeny (MHz)

wahid 16:12 7/14/94

Figure 4.5: SFDR for the uncompensated, compensated by proposed technique,
and compensated by singular value decomposition.

0.4 ,

0.35

0.3

0.2

0.15

0.1 '
0 10

wahid 16:22 7/14/94

20 30
basis function added in

40

50

33

Figure 4.6: The sum squared error for the network as each node gets added in.

400 - - - :
00002000,
O O
300t OOOOOOOO*"O@OOOO 1
2001 0] O$O?§go o ®oil® ©0O0O0o oo o Ro24 i
© O %023O o B O o © o ©
oo gozs. 0O O O o ~ O B oz 044
i o O 0O O 0o o O
100 o OOOO o O B3O (o @m?oo o o
O %mp O O O 0 K021
o ° ©© o ooo ~° B0 o 00
Q | O ®oos_ O O goud® O %02(71
vo) 0 gold OO0 O 5 O®u® O O O Ooogoﬁ%é OQO
O o1 01
Oooogooooooom@o OO% 50
O
-100 o ©O O o O O$o41 o o O O $0260 O o O oA
0) O (@) @) e} o O O O %0050 (@) 029
O e O S © 0450 o ®% o
-200F @oztsﬁogo OOOO oo O QOOOOOO$014 i
O O)
o O $01O B01g007) w20 O o %o o &osgy
O %osé ®osz O
-300r+ @) o OO0 oo 048 o O b
o4z
©0 06 0 ged ©
-400 : ' ! '
0 50 100 150 200 250

state
wahid 21:53 7/19/94

Figure 4.7: The selection of 50 nodes out of 500 initial nodes.

34

35

the second layer, 8 x 8 array of nodes were placed on the third layer, and finally
16 x 16 array of nodes were placed on the last layer. The covariance matrix of each
node was made diagonal with the diagonal elements given by the distance between
two neighboring nodes of the same layer. This node placement scheme provides
the network with the opportunity to give the error table general shape using the
widely spaced node of layers 1,2 and 3, and fine structure using the nodes of layer
4.

Figure 4.8 presents the above described scheme. Here the initial nodes are
shown using ‘.’, and the selected nodes are shown using ‘o’. Notice that the first
11 nodes were selected from layers 2 and 3 to give the table a general shape, and
then the remaining 39 nodes were selected from layer 4 to provide the required fine
structure of the table. No nodes were selected from layer 1 since the nodes were

outside the domain of ADC (figure 4.2).

slope

slope

layer 1 layer 2
400 400 S
200 200
(02
2
0 o 0
(%)
-200 -200
-400 -400
0 100 200 300 0 100 200 300
state state
layer 3 layer 4
400 400
e oo o(3RG o o o 00 0 0 00
R el lonen
200} 21010] P @ -
(CB4 o o o o o 0 0 00 o0 (@39
@ o q @3 JooTRYcT
0 & 0flli%as e S
4 %) 2 (28 « @8 @18 » » (25
C@se . @ DS Y
-200 200171l Ge 1l T eee
. . . . e (M3 . (@LF o o (B2 » (B@p4 -
e o(SB@ © o o e 0 00 0 0 00
-400 S -400 S
0 100 200 300 0 100 200 300
state state

Figure 4.8: The selection of 50 nodes out of the 4 layered nodes.

36

37

4.2 A Simple Pattern Recognition Problem

From the signal processing application of the previous section, this section
moves to a pattern recognition problem which is much more familiar territory for
neural networks. The problem here is to classify simple two dimensional, and two
class patterns. A training set of 400 samples were generated as Gaussian random
vectors. The first class (class ‘0”) are zero mean random vectors, with an identity
(I) covariance matrix. The second class (class ‘1’) has mean vector [1 2|7, and a
diagonal covariance matrix with diagonal elements 0.01 and 4.0. Figure 4.9 shows
the training data set described above. Here ‘0’ is used for class 0, and a ‘4’ is
used for class ‘1’. A test set of 20000 samples was also generated using the same
Gaussian density parameters. The reason for choosing this example is that it has
been used by several researchers to evaluate various neural network classification
schemes [6, 7, 16, 27, 31].

The RBF network presented here was trained using the 400 training sam-
ples. The nodes of the network were placed on the 400 training samples and all
the nodes had the same covariance matrix o2/, where sigma is the width chosen
between 0.1 and 1. The network was asked to find 50 best nodes, and their weights.
The desired network output was set to zero for any class ‘0’ sample, and one for
class ‘1’ samples. After training, the network was tested with the 20000 test sam-
ples. Figure 4.10 gives the percentage error versus the width of a node o. The
minimum error was found to be 7.92% when the o was 0.4. The minimum error
given by [6] was 9.26%, and the optimal error for this problem using a quadratic
classifier was 6% [6]. So the network presented here not only outperforms the
standard RBF approaches [6, 27], but also requires fewer nodes. In [6] the 9.26%
error was obtained by using 86 nodes, and all the nodes had different covariance
matrices. The Fast Orthogonal Search technique found the 50 best nodes and their
weights in less than 2 minutes in a DEC3100. So the speed of training is also very

good.

X2

The training data of the 2 dimensional 2 class problem

8 T T T T T
O class 0
+ class 1
6r i
4t i
o)
2r 80 06 i
o~ O
06 80@(%%@8
i & i
0) ép 08 g@
2% © B
) o o 5
2t @] i
o)
-4 L L
-3 -2 -1

Figure 4.9: The training sample for the 2D 2-class problem.

percent error

39

Error vs Sigma for 2 dimensional problem
15 T T T T

14

13

=Y
o

----- RBF percent error

optimal error

0 0.2 0.4 0.6 0.8 1
sigma

Figure 4.10: The percentage error vs o for the 2D 2-class problem.

40

To see how the RBF network is generalizing over the entire domain, figure
4.11 shows the output surface of the network over the entire domain of the input
sample.

The behavior of the sum square error on the training sample is also an
issue of our discussion. Figure 4.12 shows how the error is decreasing as each
node gets added in. Again as in the previous section the sum square error on the
training sample becomes almost flat as the ‘significant’ nodes have been added.
Finally a plot is presented here which shows how the search technique selected the
‘significant’ nodes from the whole set. Figure 4.13 shows the 50 nodes selected
by the network, and their order of selection. From this plot we can see that the
first node was picked from a pure class 0 region, and the second node was picked
from the pure class 1 region, which makes complete sense since we want the most
important nodes to be where most of training samples are. Also from figure 4.12

we can see that the introduction of the first node reduces training error by 50%.

The output error surface for the 2 class problem

network output

Figure 4.11: The output surface of the RBF for the 2D 2-class problem.

42

200 ! ! ! !

180

160

sum square error
[—
o
o

60

40

20

O 1 1 1 1
0 10 20 30 40 50

basis function added in

wahid 11:56 7/15/94

Figure 4.12: The sum squared error of the training samples for the 2D 2-class
problem.

50 best nodes selected out of 400, and their order of selection

5 T T T T
4+ 2 g
3+ 42 3 E
=45
437
+_1|2 5
2" as 19 -
Q 44
428 as
1t o]
a8 G a3 12y
Q7 2
Q4 Q6
ot a9 46 i
a (@3) @17480534
0 ar B Qo
%5
1 |1 a1 i
9
a S 6
432
_2]'O 1 1 1 1
-2 -1 0 1 2 3
x1

Figure 4.13: The node selection process of the orthogonal search technique.

44

4.3 Classification of Chromosome

A more complicated and challenging application of RBF will be discussed in
this section. “Karyotyping”, the classification of the chromosome in a metaphase
into the 24 normal classes has been a very important issue in the medical field
for many many years. However, the automation of karyotyping by computers has
been in development only for about 25 years [32]. Classification of chromosomes
involves finding a good set of features to describe a chromosome, and a classification
technique to identify the chromosomes using the features. The RBF neural network
developed in this report will be used for the classification of chromosome given a

set of features.

4.3.1 RBF Network for Chromosome Classification

The problem of karyotyping involves classifying the chromosome of ee fea-
tures (for the data base used here) into 24 different classes. The chromosomes in
a cell consists of 22 pairs of autosomes, one of each pair inherited of each parent,
and two sex chromosomes (an X and Y for male, and two X’s for female). Classi-
fication of a cell correctly requires classification of all 24 classes of a cell. Rather
than classifying a cell, this report will look at the classification per class. So here
the problem is to only classify each pair of autosomes, and the sex chromosomes.

The RBF structure for the chromosome classification is slightly different
than the one given in Section 2.1. The output layer of the network consists of 24
output nodes to classify the 24 classes. The decision of the network is the node that
gives highest output. One major advantage of the fast orthogonal search technique
will be evident here. Figure 4.14 illustrates the RBF network for chromosome
classification. In standard RBF networks, all the nodes of the hidden layer are
connected to all the nodes of the output layer. The fast orthogonal search will be
able to reduce the insignificant connections. The reduction of the nodes can be of

very large scale for a multiclass problem like the chromosome classification. The

45

Only p nodesare

-~ connected from the hidden
layer to the output layer

output

S CZ—X>»<

Figure 4.14: Network structure for the RBF Network for Chromosome Classifica-
tion.

46

following result and analysis section will show this phenomenon.

4.3.2 Results and Analysis

The chromosome database used for evaluating the method is the Philadel-
phia database [32, 33, 34]. Each pattern of this database is an autosome, the X
sex chromosome, or the Y sex chromosome. Each pattern consists of a set of 30
different features, which are the measurements of the normalized area, size, den-
sity, normalized convex hull perimeter, normalized length, area, centromeric index,
mass centromeric index, length centromeric index, the weighted density distribu-
tion density, and others [34].

The RBF neural network was trained with 1000 training patterns. The
initial nodes of the network were placed on these 1000 patterns. The covariance
of each node was chosen to be diagonal with initial diagonal elements equal to the

estimated variance of the class the node belongs to, that is
o2 =F {(a:]k — cik)z} Z;, G € {class l}. (4.3)

Where 02 denotes the k" diagonal element of the covariance matrix %; for the
i*" node, and c;, is the k" component of the :** node center, and z;; is the k**
feature of the pattern #;. The diagonal elements of the covariance matrix were
adjusted to separate the closest discriminating nodes. The adjustment was made

by multiplying the diagonal element of the covariance matrix by a fraction of the

distance between two overlapping classes, that is
5= A5G - GTETNG —8) GG ¢ {class I} (4.4)

Where 7 is a constant less than 1.0. The fast orthogonal search was used to only
find the best 40 nodes and their weights. The search technique successfully found

the desired nodes. Figure 4.15 shows the training error for class 1 as each node

47

was added in.

Notice here that only 40 out of 400 RBF nodes are connected to the output.
By looking at figure 4.15, we see that the training error for class 1 has leveled off
by the introduction of the 40** node, implying that introducing another node may
not improve the performance at all. Similar conclusions can be made for training
other classes.

After training the network, it was tested by a test set of 3000 patterns
different from the training set. The percent error for this test set was 20.87%,
which was slightly (1.73%) lower than the ones presented by [32, 33, 34].

The number of initial nodes from which to select a set of nodes of the
network can influence the performance. Figure 4.16 illustrates the results of some
simple tests where the number of initial node assignments was changed for the
training procedure described above. The plots in figure 4.16 give the percent error
(y-axis) for a network constructed by selecting a set of nodes per class from a
larger set of initial nodes (x-axis). The test was performed to select 20, 30, 40, 50
and 60 nodes per class from the initial sets. The percentage error was generally
lower than the error given by [32, 33]. From Figure 4.16 we can also see that the
percent error for 20 selected nodes per class is higher than all other selections.
This suggests that 20 nodes per class is not necessarily the best. On the other
hand, selection of 60 nodes does not improve the percent error at all suggesting
overtraining. The smaller initial sets of (100-300) nodes are good, but not the
best-too little to choose from, and the percent error increases as the initial nodes
increases-too many to choose from. One other important issue is that even though
the percent error is changing due to the selection process, the difference between
the best performance and the worst performance of all the tests is merely 3.2%,
suggesting that the fast orthogonal search procedure is finding the best possible

selection for a given network.

N N w
o Ul o

sum squared error

=
(6}

wahid 12:12 7/23/94

10

20
basis function added in

30

40

48

Figure 4.15: The sum squared error for training class 1 of the Chromosome prob-

lem.

49

26 ! ! ! !
25¢ —— minimum error by PNN (Sweeney)
-+ error using 20 selected nodes
— —error using 30 selected nodes
241 —- error using 40 selected nodes . +
L ~—error using 50 selected nodes
2 -+ error using 60 selected nodes
= | | |
=
O]
i~
)
o
20 1 1 1 1
200 400 600 800 1000
initial nodes

Figure 4.16: The percent error of the network for different numbers of the initial
node selection

50

CHAPTER 5

Conclusion

5.1 Summary

This thesis presented an approach to configure the most significant compo-

nent of the RBF neural networks, the weights.

1. The method provides a simple way to find the most significant nodes of the

network and their weights.

2. The technique of fast orthogonal search is implementable using a simple 10
step algorithm. Traditional approaches require significantly more computa-

tions.

3. The technique provides a solution regardless of the network parameters. The
provided solution is the best to match the target function. The traditional

approaches may not converge, or may produce an erroneous solution.

4. The solution is correlated with the target function, so scaling of any node will
not affect the network output. This is in contrast to many of the traditional

approaches, where node activation functions must be carefully normalized.

5. The approach gives a clear indication of the number of nodes to be used.
Nodes should be added only until addition of a node does not improve the
output significantly.

6. Several important applications of the RBF network have been provided. The
results show that the orthogonal search technique gives better performance

than that of other approaches.

51

5.2 Future Work

The fast orthogonal search technique is a significant improvement over exist-
ing RBF training techniques. The method provides good insight into the concerned
problem, and the size of the network required to address the problem. However,
additional research could make the procedure more practical to implement, or more
adaptable to complex problems.

The first issue is that if the problem is too big and requires a large network,
we must contend with memory limitations. For example, if we want to train the
chromosome problem of chapter 4 with 2000 training samples, and 1000 initial
nodes, then the size of the ® matrix is very large (2000 x 1000 x 8bytes ~ 16 M B).
It’s almost impossible to implement a problem of this size. To solve this problem
we have to look at how we can implement this technique without having to store
the large matrix. It may be necessary to generate the columns of ¢ again and
again to solve the problem.

The second issue is that after we find the most significant node q—S’k from
the set {®;}, is there anything we can do to make it even better? One possibility
would be to optimize the node by changing its width o. The work presented in
this thesis may provide some insight into this problem, since specific equations are
given which relate the vector <,; to the improvement in LS solution.

Finally, some more applications of the RBF network can be used to evalu-
ate the procedure. For example Optical Character Recognition (OCR) is a good
problem for neural network. The problem of handwritten zipcode recognition [35]

can be a challenge for the fast orthogonal search technique.

1]

2]

3]

52

REFERENCES

D.E. Rumelhart, J.L.. McClelland, Parallel Distributed Processing, MIT Press,
Cambridge, MA 1986.

D.S. Broomhead, D. Lowe, “Multivariable Functional Interpolation and Adap-
tive Networks,” Complez Systems, vol. 2, pp. 321-355, 1988.

J. Moody, C.J. Darken, “Fast Learning in Networks of Locally Tuned Process-
ing Units,” Neural Computation, vol. 1, pp. 281-294, 1989.

D.F. Specht, “A Generalized Regression Neural Network” [EEE Transactions
of Neural Networks, vol. 2, No. 6, pp. 568-576, 1991.

T. Kohonen, “The Self Organizing Map”, Proceedings of IEEE, vol.78, No. 9,
pp-1464-1480, 1990.

M.T. Musavi, W. Ahmed, K.H. Chan, K.B. Faris, D.M. Hummels, “On the
Training Algorithm for Radial Basis Function Classifiers,” Neural Networks,
vol. 5, pp. 595-603, 1992.

K. Kalantri, Improving the Generalization ability of Neural Network Classifiers
M.S Thesis, University of Maine, Orono, Maine, May 1992.

R. D. Jones, Y. C. Lee, W. Barnes, G. W. Flake, K. Lee, P. S. Lewis, S. Qian,
“Function approximation and Time Series Prediction with Neural Networks,”

Proc. of the IJCNN, pp 649-665, June 1990.

W. Ahmed, D.M. Hummels, M.T. Musavi, “Adaptive RBF Neural Detection
in Signal Detection,” Proccedings of International Symposium on Circuits and

Systems (ISCAS ’94), pp 265-268, May 29 - June 2, 1994, London, U.K.

53

[10] L. Xu, A. Krzyzak, A. Yuille, “On Radial Basis Function Nets and Kernel
Regression: Statistical Consistency, Convergence Rates, and Receptive Field

Size” | Neural Networks, vol. 7, No. 4, pp. 609-628, 1994.

[11] S. Chen, B. Mulgrew, P.M. Grant, “A clustering technique for Digital Commu-
nications Channel Equalization Using Radial Basis Function Networks” IEEE
Transactions on Neural Networks, vol. 4, No. 4, pp. 570-579, Mar. 1993.

[12] H. Spath, Cluster Analysis Algorithms for Data Reduction and Classification
of Objects, Halstead Press, 1980, New York.

[13] S. Chen, C.F.N. Cowan, P.M. Grant, “Orthogonal Least Squares Learning
Algorithm for Radial Basis Function Networks” IEEE Transactions on Neural
Networks, vol. 2, No. 2, pp. 302-309, Mar. 1991.

[14] M.J. Korenberg, L.D. Paarmann, “Orthogonal Approaches to Time-Series
Analysis and System Identification,” IEFE SP Magazine, July 1991, pp. 29-43.

[15] L.D. Paarmann, M.J. Korenberg, “Accurate ARMA Signal Identification -
Empirical Results,” Proceedings of Midwest Symposium, pp 110-113,1991.

[16] M.T. Musavi, K.H. Chan, K. Kalantri, W. Ahmed, “A Minimum Error Neural
Network,” Neural Networks, vol. 6, pp. 397-407, 1993.

[17] K.H. Chan, A Probabilistic Model For Evaluation of Neural Network Classi-
fiers M.S Thesis, University of Maine, Orono, Maine, May 1991.

[18] W.P. Jones, J. Hoskins, “Back Propagation - A General Delta Learning Rule,”
Byte, pp. 155-162, Oct. 1987.

[19] H. Guo, S.B. Gelfand, “Analysis of Gradient Descent Learning Algorithms for
Multilayer Feedforward Neural Networks”, IEEE Transactions on Circuits and
Systems, vol. 38, No. 8, pp. 883-893, 1991.

54

[20] L.L. Scharf, Statistical Signal Processing, Detection, Estimation, and Time
Series Analysis, Addision-Wesley Inc., 1991.

[21] R. A. Horn, C. A. Johnson, Topics in Matriz Analysis, Cambridge University
Press, 1991.

[22] G. Sewell The Numerical Solution of Ordinary and Partial Diffrential Equa-
tions, Academic Press, INC., San Diego, CA, 1988.

[23] G. Strang, Linear Algebra and Its Application, Academic Press, 1976, New
York.

[24] R. A. Horn, C. A. Johnson, Matriz Analysis, Cambridge University Press,
1985.

[25] N. Weiner, Nonlinear Problems in Random Theory, The Technology Press of
MIT and John Wiley & Sons, Inc., New York, 1958.

[26] A.A. Desrochers, “On An Improved Model Reduction Technique for Nonlinear
Systems” Automatica, vol. 17, pp. 407-409, 1981.

[27] M.T. Musavi, K.B. Faris, K.H. Chan, W. Ahmed, “A Clustering Algorithm for
Implementation of RBF Technique,” International Joint Conference on Neural

Networks, IJCNN 91, Seattle, WA, July 1991.

[28] D.M. Hummels, W. Ahmed, M.T. Musavi, “Adaptive Detection of Small Si-
nusoidal Signals in Non-Gaussian Noise using a RBF Neural Network,” to be

published in 1994 in IEEE Transactions of Neural Networks.

[29] T.A. Rebold, F.H. Irons, “A Phase Plane Approach to Compensation of High
Speed Analog to Digital Converters” IEEE International Symposium on Cur-
cuits and Systems, pp. 455, Philadelphia, 1987.

55

[30] D.M. Hummels, F.H Irons, R. Cook, I. Papantonopoulos, “Characterization
of ADCs Using a Non-Iterative Procedure,” Proccedings of International Sym-
posium on Circuits and Systems (ISCAS ’94), May 29 - June 2, 1994, London,
U.K.

[31] M.T. Musavi, W. Ahmed, K.H. Chan, D.M. Hummels, K. Kalantri, “A Prob-
abilistic Model for Evaluation of Neural Network Classifier,” Pattern Recogni-
tion, vol. 25, pp. 1241-1251, 1992.

[32] W. P. Sweeney Jr., M.T. Musavi, J.N. Guidi
“Classification of Chromosomes Using Probabilistic Neural Network”, Cytom-

etry vol. 16 pp. 17-24, 1994.

[33] W. P. Sweeney Jr. Classification of Human Chromosomes Using Probabilistic
Neural Network, M.S Thesis, University of Maine, Orono, Maine, August 1993.

[34] J. Piper, E. Granum, “On Fully Automatic Feature Measurement for Banded
Chromosome Classification”, Cytometry vol. 10 pp. 242-255, 1989.

[35] L. Sharma, Recognition of Handwritten Zipcodes Using Probabilistic Neural
Network, M.S Thesis, University of Maine, Orono, Maine, May 1994.

56

Appendix A
PROGRAM LISTING

A.1 Fast Orthogonal Search

/] %3k sk sk sk sk sk sk sk sk ok ke sk sk ok ok ke ok sk 3k ok 3 ok sk 3k ok 3 ok sk 3k sk sk ok sk 3k sk sk ok ke 3k ok 3k ok ke 3k ok 3k ok K ok sk 3k sk sk ok sk 3k sk sk ok Kk ok ok
fast_ortho_search.c

Wahid Ahmed

Jun 26, 1994

This routine implements the Fast Orthogonal Search
for a input matrix.

the prototype of this function is:
double *fast_ortho_search(MATRIX a, double *y,
int TOTAL_BASIS, double err_thres);

where, a is a matrix.
y = aw;
w 1s the unknown parameters returned by this routine.

So w is a vector of weights, the unused nodes have weights 0.
TOTAL_BASIS is number of nodes desired from the a matrix.
err_thres is the sum squared training error threshold to quit.

***/

#include <stdio.h>

#include <math.h>

#include "vecmath.h"

#include "cmath.h"

#define SQ(x) ((x) * (x)) /* define square macro */
#define MAX(a,b) ((a > b) ? a:b) /* define maximum macro */

double *fast_ortho_search(MATRIX a,

double x*y,
int TOTAL_BASIS,
double err_thres)
{
/* Define variables * /
MATRIX U,L; /* matrices for decomposition */
int i,j,k;

double dummy;

double *p; /* holds the correlation part */
double *q; /* holds the energy reduction part */
double *C; /* A pointer for the targets */
double **x; /* A double pointer for the additional
vector */
double *weight; /* The result goes here */
double *temp_vecl,
temp_vec?2; / temporary vectors for various uses */

int *selected;

selected nodes */

int flag = 0;

/%

Array that holds the indeces for

double Maximum = -10;

int Max_index;

double error; /* The error variable */
/* define the routines used */

MATRIX realloc_mat (MATRIX A,int new_rows,int new_cols);
double dot_prod(double *x, double *y, int length);

/* allocate memory for various pointers */
p = (double *)calloc(a.cols, sizeof(double));

q

weight

temp_vecl
temp_vec2

(double *)calloc(a.cols, sizeof(double));

= (double *)calloc(a.rows, sizeof(double));

(double *)calloc(a.rows, sizeof (double));
(double *)calloc(a.rows, sizeof(double));

57

selected = (int *)calloc(a.cols, sizeof(int));
for (i=0;i<a.cols;i++) selected[i] = a.cols + 1;
x = (double **)calloc(a.cols, sizeof(double *));
for (i=0;i<a.cols;i++)

x[i] = (double *)calloc(1l,sizeof(double));

/* Initialize the weight matrix
for (i=0;i<a.rows;i++) weight[i] = 0.0;

/* Initialize the matrix for the result
U = initMatrix(1,1);

/* Initialize the correlation and energy values
for (i=0;i<a.cols;i++){

for (j=0;j<a.rows;j++) temp_vecl[j] = a.el[jl[i];
pli] = dot_prod(temp_vecl,y,a.rows);
qli] = dot_prod(temp_vecl,temp_vecl,a.rows);

/* The initial sum squaerd error for the network
error = dot_prod(y,y,a.rows);
printf("initial Error = %1.6e\n",error);

/* The first iteration

for (i=0;i<a.cols;i++){
dummy = SQ(pl[i])/qlil;
Maximum = MAX(Maximum,dummy) ;

if (Maximum == dummy) Max_index = i;

/* printf("Energy = %1.4f for col = %d\n",dummy,i);
}
error —-= Maximum;

/* printf("Error = %1.6e\n",error);
selected[0] = Max_index;
U.el[0][0] = sqrt(gq[Max_index]);
for (i=0;i<a.cols;i++){
if (i == Max_index) continue;
for (j=0;j<a.rows;j++){
temp_vecl[j] = a.ell[j][Max_index];
temp_vec2[j] = a.el[j][i];
}

58

x[i][0] = dot_prod(temp_vecl,temp_vec2,a.rows)/U.el[0] [0];

qli] -= sqQ(x[il[0]);

plil -= x[i][0] * (p[Max_index]/sqrt(q[Max_index]));

/* The rest of the iterations

for (i=1; (i<TOTAL_BASIS) & (error > err_thres);i++){
/* printf("iteration %d\n",i); */
Maximum = -10;

/* Find an unselected node that will provide highest

improvement
for (j=0;j<a.cols;j++){

*/

39

flag = 0;
for (k=0;k<i;k++)
if (selected[k] == j){flag = 1; break;}
if (flag) continue;
if (qlj] <= 1e-50) continue;
dummy = SQ(p[jl)/qljl;
Maximum = MAX(Maximum,dummy) ;

if (Maximum == dummy) Max_index = j;
}
error —= Maximum;
/* printf("Error = %1.6e\n",error); */

selected[i] = Max_index;

/* First find the Orthogonal decomposition for the
selection */

U = realloc_mat(U,i+1,i+1);

for (j=0;j<i;j++) U.ell[jl[i] = x[Max_index][j];

U.el[i][i] = sqrt(q[Max_index]);

/* Update every thing else for selecting the next node */
for (j=0;j<a.cols;j++){
flag = 0;
for (k=0;k<=i;k++)
if (selected[k] == j){flag = 1; break;}
if (flag) continue;
x[j] = (double *)realloc(x[j],(i+1) * sizeof(double));
for (k=0;k<a.rows;k++){
temp_vecl[k] a.el[k] [Max_index];
temp_vec2[k] = a.ellk][j];

x[j1[i] = (dot_prod(temp_vecl,temp_vec2,a.rows)

- dot_prod(x[Max_index] ,x[j],1i))/U.el[i][i];
qljl -= sQx[j1[il);
pljl -= x[j1[i] * (p[Max_index]/sqrt(q[Max_index]));

}

printf("final Error = J1.6e\n",error);
/* for (i=0;i<U.cols;i++) printf("%d\n",selected[i]); x/

/* The nodes are selected, now find the weights for these

60

nodes. Leave the unselected nodes equal to zero */

/* This is the constant vector for the linear equation */
C = (double *)calloc(U.cols, sizeof(double));
for (i=0;i<U.cols;i++){
Ccli] = 0.0;
for (j=0;j<a.rows;j++)
C[i] += a.ell[j][selected[i]] * y[j];

/* printmatf("%1.4f",U); */
L = transpose(U);
freeMatrix(U);

/* Now solve the system of linear equations by method of
forward substitution, and back substitution */
if (cholesky_solve(L,C))
printf ("\nERROR FINDING THE SOLUTION\n");
for (i=0;i<L.rows;i++)
weight[selected[i]] = C[i];

/* Free all the memories */
freeMatrix(L);

for (i=0;i<a.cols;i++) free(x[il);

free(x);

free(p);

free(q);

free(temp_vecl);

free(temp_vec2);

free(selected);

free(C);

return(weight) ; /* returning the weights */

}

/***

realloc_mat.c

This routine reallocates a matrix to a new size, and returns the new
matrix. The values in the old matrix are saved in the new matrix
in the same order

61

calling sequence:

NEW = realloc_mat(OLD, new_rows, new_cols);

here,
OLD is the OLD Matrix, and NEW is the new omne.
new_rows and new_cols are the size of the new matrix

KKK KKK KKK K KoK Kok ok ok o o ok Kok Kok ok ok ok o ok o oK K Kok ok oK ok ok ok o ok Kok ok Kok ok ok ok ok kK K Kok
MATRIX realloc_mat(MATRIX A,int new_rows,int new_cols)

MATRIX result;

int i,j;

result = initMatrix(new_rows,new_cols);
for (i=0;i<A.rows;i++)
for (j=0;j<A.cols;j++)
result.el[i] [j] = A.el[i][j];
freeMatrix(A);
return(result);

62

Appendix B
Preparation of This Document

The author used IATEX, the high quality typesetting software, to produce this
thesis. Also the drawings were produced by XFIG. The XFIG files were then
converted into postscript format or IATRX format if possible to inlcude in the
IATRX files. The graphs of chapter 4 were generated using MATLAB.

63

BIOGRAPHY OF THE AUTHOR

Wahid Ahmed was born in Dhaka, Bangladesh on November 30, 1969. He
received his Higher Secondary Certificate (HSC) from Notre Dame College, Dhaka
in 1986. In 1989 he entered University of Maine majoring in Electrical Engineering,
and obtained his Bachelor of Science degree with high distinction in December
1992. He had done research in the field of neural networks, and pattern recognition
during last two years of his undergraduate studies. He enrolled in the Master of
Science program in Electrical Engineering at the University of Maine in January
1993. He has served as a Teaching/Research Assistant and Assistant Network
Administrator in the department of Electrical and Computer Engineering. His
current research interests are neural networks, image processing, signal processing,
pattern recognition, and robotics. He has co-authored several articles in journals
and conference proceedings. He is a candidate for the Master of Science degree in

Electrical Engineering from the University of Maine, Orono, in August 1994.

LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirement for an
advanced degree at the University of Maine at Orono, I agree that the Library shall
make it freely available for inspection. I further agree that premission for extensive
copying of this thesis for scholarly purposes may be granted by the Librarian. It
is understood that any copying or publication of this thesis for financial gain shall

not be allowed without my written permission.

Signature

Date

