
INTELLIGENT PERFORMANCE CFD OPTIMISATION
OF A CENTRIFUGAL IMPELLER

Simone Pazzi, Francesco Martelli
Department of Energetics “Sergio Stecco” – University of Florence – Florence - Italy

E-mail: s.pazzi@ing.unifi.it, martelli@ing.unifi.it

Vittorio Michelassi
DIMI, University of Roma Tre, Rome – Italy

E-mail: michelas@uniroma3.it

Marco Giachi
Nuovo Pignone – GE, Florence – Italy

E-mail: marco.giachi@np.ge.com

Frank Van den Berghen, Hugues Bersini
IRIDIA Labs, ULB, Brussels – Belgium

E-mail: fvandenb@iridia2.ulb.ac.be, bersini@ulb.ac.be

ABSTRACT
A typical centrifugal impeller characterised by a low flow coefficient and cylindrical blades is

optimised by means of an intelligent automatic search program. The procedure consists of a
Feasible Sequential Quadratic Programming (FSQP) algorithm [6] coupled to a Lazy Learning (LL)
interpolator [1] to speed-up the process. The program is able to handle geometrical constraints to
reduce the computational effort devoted to the analysis of non-physical configurations. The
objective function evaluator is an in-house developed structured CFD code. The LL approximator is
called each time the stored database can provide a sufficiently accurate performance estimate for a
given geometry, thus reducing the effective CFD computations.

The impeller is represented by 25 geometrical parameters describing the vane in the meridional
and s-θ planes, the blade thickness and the leading edge shape. The optimisation is carried out on
the impeller design point maximising the polytropic efficiency with more or less constant flow
coefficient and polytropic head. As a preliminary test the optimisation algorithm takes into account
only eight geometrical parameters describing the impeller in the meridional plane. The optimisation,
carried out on a cluster of eight PCs, is self-learning and leads to a geometry presenting an
increased design point efficiency. The program is completely general and can be applied to any
component which can be described by a finite number of geometrical parameters and computed by
any numerical instrument to provide performance indices.

The work presented in this paper has been developed inside the METHOD EC funded project for
the implementation of new technologies for optimisation of centrifugal compressors.

INTRODUCTION
Centrifugal compressors are nowadays utilised for many applications. At industrial level they

can be used in oil and gas and chemical industry from extraction, gas liquefaction and transportation
to reforming and cracking in refinery, from gas synthesis to air fractionation, in chemical and
pharmaceutical processes. Other applications of these machines can be found in power engines,
aeronautics and helicopter engines. Power and dimensions of these machines cover a range from
very small configurations for micro applications to huge multistage groups for heavy industrial
plants. It is clear that, in case of large industrial applications in which the power consumption of a
multistage centrifugal compressor can reach 70 MW, the search for a good efficiency of the
machine has to be a must for designers.



In order to improve the compressor efficiency, much effort has been devoted to the impeller,
considered the “heart” of the compressor, and thus deserving a special attention on part of
designers. Many works can be found in the technical literature dealing with the optimal design of
centrifugal impellers, ranging from the classical one-dimensional methods providing loss
correlations to more sophisticated ones exploiting CFD codes which tend to be used mostly as
instruments for the verification of performance rather than as actual design tools. It is a matter of
fact that new and powerful instruments and techniques can be used today to improve a component’s
performance. With the growth of innovative methods of optimisation, like Genetic Algorithms (GA)
and Evolutionary Strategies (ES), activities in many research fields have moved a considerable step
further. The development of Artificial Intelligence has exerted a positive influence also in
aerodynamics where it has been demonstrated that new configurations of wings, blades and
channels can be obtained, starting the optimisation process from existing geometries, with a
remarkable increase in performance. In the cases of Mosetti et al. [10] and Quagliarella et al. [13],
for example, Genetic Algorithms have been coupled to CFD solvers. The authors show how, in a
relatively small time, the CFD code is able to perform all the computations after the changes of
input parameters given by the GA and find the geometry giving the optimum solution in terms of a
previously defined objective function representing one or more performance parameters. Cosentino
et al. [4] used a Genetic Algorithm (GA) coupled to an Artificial Neural Network (ANN) to
optimise a three-dimensional impeller described by fifteen geometrical parameters and giving a
target Mach number distribution on the blade surfaces.

Following this approach, although exploiting different algorithms, it was decided to begin the
implementation of a procedure to automatically optimise an impeller given a general target
function. The method, exploiting a Feasible Sequential Quadratic Programming (FSQP)
optimisation algorithm (Fletcher [6]) coupled to a Lazy Learning interpolator (Aha [1]) to speed-up
the process, is able to automatically search for those geometrical parameters which describe an
impeller with performance improved with respect to the starting configuration. It is clear that this
expert approach required an accurate analysis of existing impeller configurations in order to identify
the most useful set of both geometrical parameters, which are changed directly by the FSQP
algorithm, and performance indices whose combination defines the target function to be maximised
or minimised. In the present work the optimisation is carried out only on the design point, although
several studies (Michelassi and Pazzi [9]) have demonstrated that impeller performance, in terms of
characteristic curve, evaluated in steady ideal conditions can significantly differ from the ones
computed in unsteady regimes taking into account the time-variable flow distortions induced by the
upstream stator components. In the present work some preliminary results obtained on a test
impeller will be shown to highlight the efficiency and flexibility of this method representing, in our
opinion, that class of engineering design tools which will be more and more utilised in the very next
years.

THE CFD CODE
The flow inside the impeller is computed by means of an implicit Navier-Stokes (N-S) solver,

XFLOS, developed in-house by the Energetics Department of Florence. The equations enforce the
balance of conservative variables as density, momentum, and total specific energy. The variables
are made non-dimensional with respect to the inlet total pressure P0 and inlet total temperature T0.
Viscosity and diffusion coefficients are made non-dimensional with respect to the inlet laminar
viscosity. The equations are discretised by centred finite differences in a curvilinear non-orthogonal
three-dimensional co-ordinate system. The algorithm is based on the scalar approximate
factorisation by Pulliam and Chauseè [12] and implemented for internal flow aerodynamics by
Michelassi and Belardini [8]. The solver is based on the ADI sequence stemming from the scalar
approximate factorisation method.

The algorithm includes second and fourth order non linear artificial damping in both the right
hand side and the implicit side of the operator in order to achieve the large degree of robustness



required in such complex flow fields. To take full advantage of the implicit time marching
formulation the solver implements a local time step strategy. The solver is designed for memory
intensive simulations and it requires approximately 60 real numbers per grid node.

In view of the wide engineering applicability of the solver, the effect of turbulence on the mean
flow field is modelled by a formulation based on the Boussinesq assumption. Among these the k-ω
model (k is the turbulence kinetic energy and ω is the turbulence frequency) proposed by Wilcox
[14] was selected for the present set of calculations because of its superior robustness and accuracy
as compared to other similar formulations. The overproduction of turbulence in stagnation points, or
in flow regions with adverse pressure gradients, is a potential source of inaccuracy. To overcome
this problem, which is common to all two-equation turbulence models, the solver introduces the
realizability constraint proposed by Durbin [5] which limits the turbulence time scale to limit the
turbulence level in stagnation regions.

The code can use relative or absolute variables in the rotating frame of reference, and absolute or
relative boundary conditions. All the present runs are performed by using absolute variables and
boundary conditions.

The structured mesh generator is an in-house developed code creating I-type grids. The I
structure allows easy treatment of tip clearance and, although the tested impeller is shrouded, the I
structure was retained for this set of calculations. The grid is generated once the impeller camber
lines at hub and shroud are given by points in a cylindrical reference frame, together with local
blade thickness. The distribution of grid nodes along the geometry can be easily controlled by the
user. Particular attention was devoted to the leading edge discretisation. The code is able to mesh
both shrouded and open impellers.
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Figure 1. Particular of the blade leading edge discretization (left) and view of a coarse grid on
an open impeller (right).

The code was developed in order to be easily used for massive and repeated computations during
which small changes to the blade geometry are carried out in sequence thus allowing the utilisation
of a standard input file for all configurations. In view of the adoption of the structured mesh
generator for sequential computations, some automatic check features for grid quality improvement
were implemented.

THE OPTIMISATION ALGORITHM
A general optimisation problem consists in finding the values of some variables describing a

model that minimize or maximise a determined objective function while satisfying some established
constraints. Optimisation problems are made up of three basic ingredients:



ü An objective function which has to be minimised or maximised.
ü A set of unknowns or variables which affect the value of the objective function.
ü A set of constraints allowing only certain values of the design variables.

The general constrained optimisation problem is to minimise a non-linear function subject to
non-linear constraints. A mathematical formulation can be stated as follows:

( ) ( ) ( ){ }ℑ∈=Γ∈≤ ixcixcxf ii ,0,,0:min

where each ci is a mapping from ℜn to ℜ, and Γ and ℑ are index sets for inequality and equality
constraints, respectively.

The main techniques that have been proposed for solving constrained optimisation problems are
reduced-gradient methods, sequential linear and quadratic programming methods, and methods
based on augmented Lagrangians and exact penalty functions. Other algorithms, like Evolutionary
Strategies or Genetic Algorithms, can as well fit these problems although not intrinsically
constrained.

Many algorithms satisfying these requirements are nowadays available and employed at many
levels in engineering processes.

The choice of the optimisation algorithm for the impeller was quiet delicate because of the many
aspects involved in the analysis. The algorithm was required to be fast, reliable, sophisticated
enough to find an optimum in a complex model, and constrained.

The initial choice of a Genetic Algorithm (see Goldberg [7]) was soon discarded because it
seemed not possible to use this technique with such a big search-space. With this in mind it was
decided to use a modified version of the Feasible Sequential Quadratic Programming (FSQP)
algorithm which has been implemented and tested by IRIDIA labs at the Université Libre de
Bruxelles. The sequential quadratic programming (sequential QP) algorithm is a generalisation of
Newton's method for unconstrained optimisation in that it finds a step away from the current point
by minimising a quadratic model of the problem. In its purest form, the sequential QP algorithm
replaces the objective function with the quadratic approximation:
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where Lxx
2∇  is an approximation of a part of the Hessian matrix of the objective function

Lagrangian. The constraint functions are replaced by linear approximations. The step dk is then
calculated by solving the quadratic subprogram
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Feasible sequential quadratic programming algorithms, as their name suggests, constrain all
iterates to be feasible. They are more expensive than standard sequential QP algorithms, but they
are useful when the objective function, as in our case, is difficult or impossible to calculate outside
the feasible set, or when termination of the algorithm at an infeasible point (which may happen with
most algorithms) is undesirable. The FSQP code solves problems of the form

( ) ( ){ }bAxxcxf =≤ ,0:min

 In this algorithm, the step is defined as a combination of the sequential QP direction, a strictly
feasible direction (which points into the interior of the feasible set) and a second-order correction



direction. This mix of directions is adjusted to ensure feasibility while retaining fast local
convergence properties.

Feasible algorithms have the additional advantage that the objective function can be used as a
merit function, since, by definition, the constraints are always satisfied. In order to reduce the time
necessary for the optimisation, the FSQP algorithm was coupled to a data modeller able to
substitute the CFD code giving an approximation of the performance indices once a database of
geometrical parameters and corresponding results are provided. For this purpose a local modeller
was preferred to a global one, as an Artificial Neural Network. The first one, in fact, provides a
description of the system by combining several models pertaining to different operating regimes.
Each of the models is obtained giving full attention to a reduced portion of the space of the possible
solutions, yielding a more accurate description even when simple approximators (for example linear
models) are used. It is precisely the simple form of the local models, and consequently the
possibility of handling them using standard and well-known tools from linear statistics, that makes
the local approach appealing. A second reason for the growing popularity of local methods is that
the decomposition of the learning task into sub-tasks makes the whole process easier to manage,
allowing for instance the integration of physical models into the black-box description. The
modelling process, adopting such methods, starts with a training phase during which the examples
available are used both to extract the local descriptions of the system and to define a partition of the
space of the operating regimes. Any request for information is fulfilled by interpolating the answers
of different local models.

Lazy learning (Atkeson et al. [2]), also known as just-in-time learning, is inspired by nearest-
neighbour techniques and by non-parametric statistics. It defers processing of the examples until an
explicit request for information is received. When this happens, the database available is searched
for those examples that, according to some measure of distance, are considered most relevant to
answer the query. These examples are used to extract a local description of the system, for example
through a local linear model, and finally to fulfil the request. Both the answer and any intermediate
results are then discarded and each following request for information will make the full process start
again.

The lazy approach is able to deal effectively with situations in which the examples are not evenly
distributed or when the noise affecting the data is described by different distributions for different
operating regimes. Moreover, since the training phase is computationally inexpensive and simply
amounts to a storage of the available examples into a database, the lazy approach is particularly
suitable when the examples are not all available from the beginning but are collected on-line. This
makes Lazy Learning a very well fitting technique for our purposes while the adoption of a global
modeller like ANN would have required continuous training loops for each estimation. In this case,
on the contrary, a new example observed requires only an update to the database. It is worth
noticing that, contrary to global approximators, lazy learning does not suffer from data interference.
That is, acquiring examples about an operating regime does not degrade modelling performance
about others. The drawbacks of lazy learning are mainly associated with the necessity of a possibly
large amount of memory to store the data, and with the fact that each request for information
involves starting the identification of a local model from scratch. Nevertheless the evolution of
computer hardware has already partially eased these problems.

Birattari et al. [3] test the performance of the Lazy Learning algorithm, showing how, compared
to others, it shows to be one of the best regression algorithms, especially when the number of
dimensions (geometrical parameters plus performance indices, in our case) is high.

As mentioned before, the LL regressor has been coupled to the optimisation algorithm in order to
speed-up the process. Each time an objective function evaluation is required, in fact, the LL
performs an evaluation of the Quality of the Prediction (called ‘QP’) using leave-one out cross-
validation. This evaluation is available at no costs as an internal result of the calculation of the
prediction. QP is used (with other small heuristics) to decide if the LL prediction should be used



instead of the CFD code result. In this case the computation time is clearly shortened since the CPU
time for an LL prediction is almost zero if compared to the one required by a full 3D CFD analysis.

THE IMPELLER PARAMETERISATION
Similarly to what was done by Cosentino et al. [4] a detailed set of geometrical parameters able

to fully and accurately describe the impeller was chosen. The parameters, which can be used both
for mixed and radial flow impellers, can be divided into three main groups. The first one collects
the parameters describing hub and shroud camber lines, including the inlet vaneless channel, in the
meridional plane. The second one is the group containing the parameters describing hub and shroud
camber lines in the s-θ plane, where s and θ are respectively the curvilinear and the tangential co-
ordinate. The third group consists of those parameters necessary to completely describe the blade
once its camber line has been defined.

The first group gathers the eight control points of the third order Bezier curves representing hub
and shroud in the meridional plane (see Figure 2). This kind of curves, as suggested by Poloni [11],
were chosen both for their capacity of accurately representing a curve with a restricted number of
parameters, and for the flexibility of control points for geometrical constraints handling. The first
group also contains the data representing the linear radial extension of the blade and the eventual
slope of the linear shroud segment on the meridional plane.

z

r

r2

r0

r0+b0

b2

∆z

zles zleh

s

dr

Figure 2. Sketch of the impeller parameterisation on the meridional plane.

Also for the description of hub and shroud on the s-θ plane, third order Bezier curves were
adopted.

Once the blade camber lines have been completely described, the parameters belonging to the
third group define the thickness at hub and shroud and the shape (elliptic) of the leading edge.

It’s important to highlight that this impeller parameterisation is able to represent also innovative
blade shapes characterised by double curvature surfaces, leaned leading and trailing edges, variable



thickness distribution and other features which, for the test performed in this work, have not been
considered.

PERFORMANCE INDICES
The necessity to implement an easy to use tool for an automatic optimisation of the impeller

required the choice of simple but meaningful performance parameters. The choice made by
Cosentino et al. [4] to impose as target function a determined Mach number distribution on the
blade surfaces seemed not to match our requirements, both because this would imply the necessity
of an expert user who, given a certain impeller typology, has in mind the optimal blade loading
distribution, and because this approach cannot be fully generalised to innovative impeller
geometries.

With this in mind we decided to adopt as performance indices those non-dimensional parameters
which are normally used in industry to classify impellers (or stages) for the common applications.
In this way we also would meet the expectations on part of industry to deal with a program which
can be exploited at several levels of technical knowledge.

The first performance index is the inlet flow coefficient ϕ1 defined as follows:
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where Q1 is the volumetric flow rate and D1 and U1 are the inlet tip impeller diameter and velocity
respectively.
The second coefficient is the load factor τ defined as the total enthalpy rise across the impeller
divided by the inlet peripheral blade velocity:
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The third performance parameter considered for our optimisation procedure is the polytropic
efficiency ηp:
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These coefficients were sufficient to characterise the impeller performance. Below it will be
shown how, combining these parameters into a target function, it was possible to perform an
optimisation procedure which provided a new impeller characterised by a higher efficiency at the
same flow coefficient, rotational speed and pressure ratio.

COMPUTATIONS AND RESULTS
The program has been tested on a two-dimensional impeller whose meridional view is sketched

in Figure 3. This is a low flow coefficient shrouded impeller with seventeen cylindrical backswept
blades. As it can be seen in figure the impeller is characterised by totally radial blades while the
axial part of the inlet channel is vaneless.



The objective function was stated in order to maximise the polytropic efficiency keeping the
flow coefficient and the polytropic head as close as possible to the initial (design) ones. The target
function is then defined as:

f=-(ηp)2+10((τηp)des-τηp)2

where  (τηp)des represents the required polytropic head. Since the function f has to be minimised,
it has been defined in order to increase significantly each time the computed polytropic head differs
from the required one.

Figure 3. Meridional view of the test impeller.
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Figure 4. Convergence history for the test impeller optimisation.



The computations are performed imposing a non-dimensional inlet flow velocity and the
impeller rotational speed. The mesh used has 89 nodes in the streamwise direction, 69 nodes in the
blade to blade direction and 51 in the spanwise direction.

For the performed test only 8 out of the whole 25 geometrical parameters were left free to
change during the optimisation process. These 8 parameters are the ones which control the shape of
the impeller in the meridional plane, thus letting unaltered the blade curvature in the s-θ plane.

Figure 4 shows the convergence history of the performed test. The values of the performance
indices reported are normalised with respect to their value for the base impeller. It can be seen that
the flow coefficient and the polytropic head (black squares and red dots respectively) are varying
within a range of 4% with respect to their initial value, thus confirming the correct choice of the
objective function. The diagram shows how the polytropic efficiency of the impeller (green
triangles) improves of 2% with respect to the initial value in about 90 computations including
function and gradient evaluations for an amount of about 100 hours of CPU time.

Figure 5 shows a comparison between the original meridional channel (black line) and the
optimised one (red line). The new geometry is characterised by a smoother curvature radius in the
axial-to-radial bend of the impeller. Also the exit radius and blade height are slightly increased with
respect to the initial ones.
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Figure 5. Comparison between base (black) and optimised (red) impeller shapes on the
meridional plane.

Figure 6 shows the trend of two performance indices (load factor and polytropic efficiency)
along the meridional channel curvilinear abscissa between leading and trailing edge. As for the
following plots, for each value of the s co-ordinate (see Figure 2) the variables are mass averaged
on a section perpendicular to the curvilinear abscissa itself. These first two plots show how the
optimised impeller presents a much higher polytropic efficiency already close to the impeller
leading edge (about 40% of the meridional length). This is due to the lower losses taking place in
the upstream axial to radial bend of the impeller thanks to the modifications to the wall curvature
radius with respect to the base geometry. Along the blade the efficiency distribution for the
optimised configuration remains almost constant while the base impeller presents a sudden rise of
the ηp value just downstream the leading edge and then an almost flat trend from 55 to 100% of the



meridional length. In the right part of the figure the load factor distributions for the two impellers
are almost parallel, with the optimised one which is somehow translated to slightly lower values
with respect to the base one. Thanks to the lower loading on the optimised blade it was possible to
increase the final polytropic efficiency keeping the same head value of the base geometry.
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Figure 6. Polytropic efficiency (left) and load factor (right) distributions along the meridional
curvilinear abscissa for the base (00) and optimised (70) impeller.
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Figure 7. Absolute total pressure (left) and total temperature (right) distributions along the
meridional curvilinear abscissa for the base (00) and optimised (70) impeller.

Figure 7 shows how the total temperature distributions for the two impellers are quite similar,
with the optimised one translated to lower values with respect to the base one. The main
contribution to the polytropic efficiency increase for the optimised impeller comes from the total
pressure distribution, as shown in the left plot of the same figure. Here it can be seen that, close to
the blade leading edge (about 40% of meridional length) both impellers present a sudden total
pressure rise which is remarkably higher for the optimised configuration. From 40 to 100% of the s
abscissa both the distributions remain parallel. The total pressure trend is quite similar, for both
impellers, close to hub and to shroud walls (see Figure 8) although close to shroud the curve slope



for the optimised impeller is slightly worse than the one corresponding to the base geometry. The
result, anyway, consists in a higher exit to inlet ratio of total pressure for the optimised geometry
leading, from the definition itself of the performance index, to a higher value of the polytropic
efficiency with respect to the base impeller.
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Figure 8. Absolute total pressure close to hub (left) and shroud (right) distributions along the
meridional curvilinear abscissa for the base (00) and optimised (70) impeller.

CONCLUSIONS
An optimisation procedure based on a FSQP search algorithm coupled to a Lazy Learning

approximator exploiting a structured CFD code has been applied to a test radial impeller for
centrifugal compressors. Eight geometrical parameters controlling the shape of the meridional
channel, among the 25 necessary to completely describe the blade, have been utilised as free
variables for the optimisation process. The target function has been defined in order to improve the
compressor’s efficiency keeping almost constant the flow coefficient and the polytropic head.

In less than hundred computations, including function and gradient evaluations, the program has
been able to increase of 2% the impeller polytropic efficiency keeping the inlet flow coefficient and
the polytropic within an acceptable range. The new impeller is characterised by a smoother
curvature radius in the axial-to-radial bend of the impeller. Also the exit radius and blade height are
slightly increased with respect to the initial ones.

The preliminary results shown in this work highlight the capacity of the algorithm to perform an
optimisation procedure in a fast and reliable way without any kind of human intervention, if we
except the definition of the target function. Hence the procedure meets the requirements on part of
industry of an instrument able to automatically design a component without the necessity to employ
highly specialised personnel.
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