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Abstract—Fuzzy controllers are now part of the common control tools,
and several different approaches for their design have been proposed in
the literature. This paper presents a direct adaptive fuzzy controller for
unknown nonlinear systems. Starting from Single Step Ahead Direct
Adaptive Control approach, the Multiple Steps Ahead Direct Adaptive
Control scheme is presented. These approaches have been both devel-
oped at IRIDIA in the framework of the FAMIMO Esprit project. The
strength of the second method is to overcome the problems related with
the first approach, such as its inability to control non minimum phase sys-
tems, at the price of increased computational load, and a deeper knowl-
edge of the model of the system.

I. INTRODUCTION

Fuzzy control includes a variety of different approaches for
solving control problems. In the case of rule-based control,
for example, the controller is defined by means of linguis-
tic readable rules. Piecewise linear control defines a set of
local linear controllers, acting in different zones of the state-
space, which are smoothly connected to produce the desired
response. Model-based control, instead, defines a fuzzy model
which can be tuned on the basis of the data available from
the process. One common denominator in all these visions
of fuzzy control is the inherent nature of fuzzy models, a soft
combination of piecewise simple (generally linear) models.

Since it has been proven that fuzzy models can be used as
universal approximators, they can be successfully used as tun-
able black-boxes either in an identification or a control con-
text. DAFC [1] (Direct Adaptive Fuzzy Control) is closely re-
lated to neurocontrol [2], [3] since the neural control box has
been substituted with a fuzzy one. As in the case of neuro-
control, the adaptive algorithm is gradient-based, and allows
an on-line continuous adaptation of the controller. In previ-
ous papers however [1], it had been shown why the particu-
lar structure of fuzzy models makes them better suited to be
integrated in this closed-loop gradient-based algorithm. For
instance, when restricting the parameter tuning to the conse-
quent part of the fuzzy rules, which are linear respect the pa-
rameters to adapt, it had been possible to apply the Lyapunov
stability theory in order to prove the asymptotic stability of the
overall system (the convergence of the tracking error to zero)
[3].

Another important aspect of DAFC is that in some simple
versions, like in the case of the single step ahead control, it has
been shown that prior knowledge of the process, which can be
limited to the Jacobian matrix, can remain very imprecise [2].

The limitations inherent to any control algorithm which re-
stricts its future to just one single step ahead are well known
in the control community. Any non minimum phase systems

becomes impossible to control by relying on a single step an-
ticipation. The main part of the paper will present the ex-
tension of the single step ahead DAFC methodology to adapt
the controller on the basis of a multiple steps ahead predic-
tion. Each time an adaptation of the controller is performed,
a simulation of the evolution of the states is computed and is
used in order to predict the effect changes of the controller pa-
rameters. In contrast with the single step ahead version, the
algorithm now needs an accurate multiple steps ahead simula-
tion which consequently demands a much better prior knowl-
edge of the process. This new work has been inspired by work
previously done by the authors on adaptive fuzzy controller
for state-feedback optimal control [4] and on the model based
predictive control scheme developed by Babuska [5].

II. SYSTEM DESCRIPTION

Figure 1 shows the structure of a closed loop control system
which is composed by:
• a plant to be controlled;
• a model of the plant;
• a predictor;
• a fuzzy controller;
Assume that the n inputs, m outputs plant is expressed in
terms of its input-output representation by:

yi(k + 1) = Fi

(
y(k), . . . ,y(k − py + 1),

u(k), . . . ,u(k − pu + 1)
)
, i = 1, . . . ,m (1)

where yi(k) is the ith output of the plant at time k, u(k) is
the input vector [u1(k), u2(k), . . . , un(k)]T and y(k) is the
output vector [y1(k), y2(k), . . . , ym(k)]T , Fi is an unknown
nonlinear function, and py and pu are the known structure or-
ders of the system for the output i.

If the regressor vector φk is defined as follows:

φk = [y(k), ..,y(k − py + 1),u(k − 1), ...,u(k − pu + 1)]
(2)

equation (1) can be rewritten as:

yi(k + 1) = Fi[φk,u(k)], i = 1, ...,m (3)

which in vector notation becomes:

y(k) = F[φk,u(k)] (4)
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Fig. 1. Schematic representation of the DAFC system

The controller may be any kind of fuzzy system and its output
u(k) is fed into the plant. It can be defined as follows:

u(k) = uk = F(r(k), ψk;w) (5)

where ψk is a regressor similar to φk , w is the set of pa-
rameters describing the fuzzy controller and r(k) is the vector
of the reference signals [r1(k), r2(k), ..., rm(k)]T . The con-
troller will produce a set of control actions u(k) which will
drive the plant outputs y(k + 1) at the values specified by
the vector r(k). Since the dynamics of the controller is much
faster than the one of the plant to be controlled it is supposed
that the inputs at time k immediately influence the outputs of
the controller.

The model of the plant provides the predictor with the para-
metric description of the plant to be controlled. The predictor
performs a forward simulation of the system composed by the
plant and the controller. Each predicted output of the plant is
equal to:

ŷi(k + 1) = F̂i[φk,u(k)], i = 1, ...,m (6)

where F̂i is the estimate of Fi, based on the parametric de-
scription provided by the plant model. This information is
then used to perform the parametric adaptation of the con-
troller.

III. SINGLE STEP AHEAD ADAPTIVE CONTROL

The single step ahead fuzzy adaptive controller provides at
each time step k the n inputs ui(k) of the plant which min-
imize a chosen error criterion. Some assumptions about the
controlled process and the fuzzy controller are necessary [3].
1. the form of the expression 1 results from the fact that, at
any time k, it is possible to reconstruct the state of the process
from the observations of the last py − 1 plant outputs and the
last pu − 1 plant inputs.
2. we assume that, whenever the state of the process in the
operating region, there exists a uniquely defined control vector
u
(k) realizable, depending on this state, that allows to reach
the desired targets r(k + 1) at the time (k + 1).
3. the plant process is inverse stable. This and the previous as-
sumption mean that there exists a unique asymptotically stable
control law that allows perfect tracking of the signal r(k+ 1).

4. the fuzzy controller F(r(k), ψk;w) can approximate the
control law u(k) to any degree of accuracy in the region of
interest, for some “perfectly tuned” weights w = w
;
5. the speed of adaptation of the weights is low in order to be
able to separate in the measurement of the error the effects of
the parameters adjustment from the input signal variations [6];
6. Every ∂F (...)

∂ut
, for t < k is equal to 0 since past actions are

considered constant;
These assumptions allow us to design a learning algorithm,
based on a gradient descent, which can be used to train the
weights of the fuzzy controller [7], [8]. Let’s select the fol-
lowing error criterion:

J =
1
2
(rk+1 − ŷk+1)TQ(rk+1 − ŷk+1) +

1
2
uT

kRuk (7)

where rk+1 are the values of the setpoints at time k+ 1, ŷk+1

are the predicted outputs of the plant calculated using its para-
metric model, and Q and R are square matrixes which weight
the importance of the different inputs and outputs in the com-
putation of the error criterion.

At each time step k the fuzzy controller will try to reduce
the error J on-line by a achieving a gradient descent in the
weight space:

wk+1 = wk − η
∂J

∂w
(8)

where η > 0 is the learning rate. Differentiating J with re-
spect to the weights w we obtain:

∂J

∂w
= (rk+1 − ŷk+1)TQ

∂ŷk+1

∂w
+ uT

kR
∂uk

∂w
(9)

where ∂ŷk+1/∂w is defined as a matrix having elements
[∂ŷ(k + 1)/∂w]ij = ∂ŷi(k + 1)/∂wj . Substituting this ex-
pression in equation 8 we obtain:

wk+1 = wk − η

(
(rk+1 − ŷk+1)TQ

∂ŷk+1

∂w
+ uT

kR
∂uk

∂w

)
(10)

Considering the state relations expressed in 4 and 5 it is pos-
sible to write [3]:

∂ŷk+1

∂w
=
∂F̂(φk,uk)

∂w
=
∂F̂(φk,uk)

∂uk

∂uk

∂w
=
∂ŷk+1

∂uk

∂uk

∂w
(11)

∂uk

∂w
=
∂F(rk, ψk;w)

∂w
(12)

and therefore equation 10 becomes:

wk+1 = wk − η

(
(rk+1 − ŷk+1)TQ

(
∂ŷk+1

∂uk

∂Fk

∂w

)

+uT
kRk

∂uk

∂w

)
(13)

which is a simple adaptation rule, and can be used on-line for
tuning the parameters of the controller.



IV. MULTIPLE STEPS AHEAD ADAPTIVE CONTROL

The algorithm described in the previous section can be im-
proved using the approach used in generalized predictive con-
trol theory [9], where the design procedure considers future
values of the control signals as well as the present ones. Using
this approach the future values of the setpoints and the system
outputs are needed to calculate the weight update rule.

If the structure of the system depicted in figure 1 is main-
tained, it is possible to design another learning algorithm,
based on the same principles, which performs an adaptation
of the weights of the fuzzy controller using information about
the future behaviour of the system. In this case the predictor
will provide the fuzzy controller with information regarding
the futures values of the ŷ and u up to the prediction horizon.
In this case it is necessary to make the following assumptions:

1. the state of the process at any time can be reconstructed
using the information inside the regressor φk;
2. it exists a unique series of inputs [uk uk+1 ...uk+Hc ] which
lead the output signals y towards r at time k +Hp. Hc is the
control horizon (the length of the time horizon where a control
signal is applied) Hp is the prediction horizon (the length of
the time horizon where the future states of system are simu-
lated). The prediction horizon must be bigger or equal to the
control horizon (Hp ≥ Hc). Control actions are considered
constant once the control horizon is reached (u t = uk+Hc for
t > k +Hc);
3. Every ∂F (...)

∂ut
, for t < k is equal to 0 since past actions are

considered constant;
4. The fuzzy controller F(r(k), ψk;w) can approximate the
series of perfect control actions [ukuk+1...uk+Hc ] to any de-
gree of accuracy in the region of interest for some “perfectly
tuned” weights w = w
;
5. the speed of adaptation of the weights is low in order to be
able to separate in the measurement of the error the effects of
the parameters adjustment from the input signal variations [6].

These assumptions allow the design of an adaptation algo-
rithm based on the gradient descent approach defined in equa-
tion 8.

In order to train the parameters w the following cost func-
tion is selected:

J =
1
2

k+Hp∑
t=k

(rt − ŷt)TQt(rt − ŷt)

+
1
2

k+Hc∑
t=k−1

∆uT
t Rt∆ut (14)

where ∆ut = ut − ut−1 and uk−2 = 0. The matrix
Q ∈ �n×n×Hp weights the errors (rt − ŷt) while the matrix
R ∈ �n×n×Hc has the effect to penalize the large variations
of ∆ut which could destabilize the system.
Substituting this expression in equation 8 and recalling equa-

tion 4 it is possible to obtain:

wk+1 = wk − η


k+Hp∑

t=k

(rt − ŷt)TQt
∂ŷt

∂w

+
k+Hc∑
t=k−1

∆uT
t Rt

∂∆ut

∂w

)
(15)

wk+1 = wk − η


k+Hp∑

t=k

(rt − ŷt)TQt
∂F̂(ut−1, φt−1)

∂w

+
k+Hc∑
t=k−1

∆uT
t Rt

∂∆ut

∂w

)
(16)

The central part of this expression can be expanded as follows:

∂F̂(ut−1, φt−1)
∂w

= [
∂F̂1(ut−1, φt−1)

∂w
...
∂F̂m(ut−1, φt−1)

∂w
]T

(17)

Each element of the previous vector can be expanded into its
partial derivatives:

∂F̂i(ut−1, φt−1)
∂w

=
∂F̂i(...)
∂φt−1

∂φt−1

∂w
+
∂F̂i(...)
∂ut−1

∂ut−1

∂w
(18)

however from 5 it is possible to write:

∂ut−1

∂w
=
∂F(rt−1, ψt−1;w)

∂w
=
∂F(...)
∂w

+
∂F(...)
∂ψt

∂ψt

∂w
(19)

which substituted in equation 18 gives:

∂F̂i(ut−1, φt−1)
∂w

=
∂F̂i(...)
∂φt−1

∂φt−1

∂w
+

∂F̂i(...)
∂ut−1

(
∂F(...)
∂w

+
∂F(...)
∂ψt−1

∂ψt−1

∂w

)
(20)

Equations 19 and 20 need to be recursively computed in order
to calculate the solution of equation 16.

At the first step, due to assumption that past actions are con-
sidered constant, the partial derivatives of the regressors re-
spect to the weights w are all equal to zero. Therefore at time
t = k:

∂uk−1

∂w
=
∂F(rk−1, ψk−1;w)

∂w
(21)

∂ŷk

∂w
=
∂F̂(ut−1, φk−1)

∂w
=
∂F̂(...)
∂uk−1

∂F(...)
∂w

=
∂ŷk

∂uk−1

∂F(...)
∂w
(22)

It is possible to note that equation 22 has the same form of the
one used in the single step approach presented in equation 13.
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Fig. 2. Performance of the multiple step ahead DAFC on a non minimum
phase system after 10000 steps of learning

Then it is necessary to compute the other values of ∂yt

∂w and
∂ut

∂w up to the prediction horizon. The values calculated at
each step are used for the computation of the derivatives of
the regressors respect to the weights since:

∂φt′

∂w
=
∂y(t′)
∂w

+ ...+
∂y(t′ − py + 1)

∂w
+

∂u(t′ − 1)
∂w

+ ...+
∂u(t′ − pu + 1)

∂w
(23)

where and all the terms ∂y(ti)
∂w and ∂u(ti)

∂w are equal to zero for
ti < k + 1.

The multiple step algorithm is a much more complicated
algorithm in comparison with the single step version but it al-
lows to alleviate two strong assumptions: the system does not
need anymore to be minimum phase and any desired output
does not need to be reachable in one step. This comes from
the fact that instead of looking one step in the future in order
to select a control policy, we consider a longer time horizon. It
implies that even if the system starts in the “wrong direction”
(non minimum phase behaviour), the learning algorithm will
have the time to “realise” that it changes direction and adapt
its behaviour. It also implies that the learning algorithm can
now learn on the basis of a series of control actions instead of
only one control action in order to reach the desired system
output.

The relaxation of these assumption has two costs: a higher
computation load and the need for a more precise model. The
first cost is easily understandable and is due to the simula-
tion at each step of the closed loop behaviour over a long time
horizon. The second cost comes from the fact that the long
term predictions are more difficult to achieve and need better
precision, at each step, in order to avoid errors accumulation.

water
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Fig. 3. Schematic representation of the aerated bioreactor for waste-water
treatment

V. SIMULATION STUDIES

The two DAFC approached have been tested on two dif-
ferent systems. One toy problem, and a waste water treat-
ment plant, a benchmark which has been used by all the part-
ners taking part in the FAMIMO project (ESPRIT LTR Project
21911) [10].

A. The toy problem

Multiple Steps Ahead method has been tested on the fol-
lowing, simple nonlinear, non minimum phase system.

yk+1 = yk + sin(3 ∗ uk−1) − 3uk (24)

It is impossible to control this system with the single step
ahead method, and therefore we had to use the multiple steps
ahead procedure. The plant was modeled by a Takagi-Sugeno
fuzzy system. It had been identified using 5000 points col-
lected by exciting the plant with a pseudo random sinusoidal
input, by means of the Gustafson-Kessel algorithm [11] for
calculating the centers and the linears of the Takagi-Sugeno
system. Figure 2 shows the result of the reference signal and
the output of the plant obtained using a controller made of 9
fuzzy Takagi-Sugeno rules whose consequents have been ini-
tialized to 0 with the learning rate η = 0.0005. At each time
step, a 5 steps ahead prediction of the system was performed
and used to optimize the parameters of the linears consequents
of the controller.

In this example it is interesting to notice the typical pattern
present in the non minimum phase systems. At each set point
change, the system starts in the opposite direction with respect
to the current value of the reference signal. This system, which
is impossible to control using the one step ahead method, is
easily controlled using the multiple steps ahead one.

B. The waste water process problem

A biological system, which consists of a continuous flow
aerated bioreactor for waste water treatment in pulp and pa-
per industry, has been the target of our second experimental
study. The bioreactor contains a mixed microbial population
growing in a blending of two types of substrates, an ener-
getic and a xenobiotic one. The first one is easily biodegrad-
able, while the second one, is less degradable. This makes
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Fig. 4. Performance of the 3 steps ahead adaptive controller on the waste water processing plant after 6400 learning steps
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Fig. 5. Performance of the 10 steps ahead adaptive controller on the waste water processing plant after 6400 learning steps

the xenobiotic substrate as the main pollutant in the waste
water, since the energetic one can be easily degraded by the
micro-organisms present in the bioreactor. The energetic sub-
strate and the biomass concentration are the measurable out-
puts signals, while the xenobiotic concentration is not avail-
able on-line, and must be reconstructed through an observer.
The waste-water is continuously fed into the reactor, and the
volume of the water is kept constant, thus the inflow is equal
to the outflow. It is possible to control the concentration of
the dilution rate and the concentration values of the two sub-
strates, by mixing two flows, one from a clean water tank and
one form a waste-water tank.

The waste water plant was modeled by a Takagi-Sugeno
fuzzy system. It had been identified using 5000 points col-
lected by exciting the plant with a pseudo random sinusoidal
input, by means of the Gustafson-Kessel algorithm [11] for
calculating the centers and the linears of the Takagi-Sugeno

system. The adaptation algorithm had been used on the system
with three different steps horizons, 1, 3, and 10 steps ahead
predictions. The results of the 1 step ahead adaptive con-
trollers were quite poor, while the graphs reporting the perfor-
mance of the system in controlling the biomass concentration
and the xenobiotic substrate concentration for the other config-
urations are reported in figure 4 and 5. The controller uses four
Takagi-Sugeno fuzzy rules for controlling the biomass con-
centration and two for the xenobiotic substrate concentration.
All the consequents of the rules had been initialized to 0 at the
start of the experience. The learning rate for the 3 steps ahead
controller is equal to 0.05, while it was set to 0.0050 for the 10
steps ahead controller. Only the the parameters of the linears
consequents of rules of the controller had been optimized dur-
ing the adaptation. The outputs of the plant are affected with
a random square noise of amplitude between −2% and +2%
of the output value. Parametrics variation of the biological ki-



netic parameters which regulate the waste water plant are also
included in the system to take into the account the imprecise
knowledge of the dynamics of the system.

It can be seen on the figures 5 and 4 that after a long enough
time of learning (6400 steps), both systems achieve very good
control results under noisy conditions. The main difference
between the two algorithms appears in the time needed to learn
the control policy. Since the 10 steps ahead based adaptation
method looks further at each step, it is able to learn faster than
the 3 steps ahead one. However, it also needs more computa-
tion what implies that if the learning is faster in real time (it
needs less time steps to learn) it can be slower in simulation
time (the time of the simulation can be longer).

VI. CONCLUSIONS

The adaptive algorithms presented in this paper are very
close to algorithms implemented on neural controllers, and as
a matter of fact can be easily grafted on any type of black-
box ”parametrized” controllers whatever fuzzy or not. Nev-
ertheless, fuzzy models, due to their inherent decomposition
of any non-linear functional mapping into a set of local linear
maps softly composed, appear like en ideal candidate for act-
ing as the black-box. These adaptive algorithms could work
with any initial randomized fuzzy models but it is clear that,
like for any optimization application, the better the initial con-
troller to be adapted will be, the faster and the better the adap-
tation will work. This strongly justifies the need to use some
well-designed controllers (designed on the basis of some prior
knowledge of the process or available data of the process) to
be initially installed in the controller box even if they will still
be subject to some later on-line adaptation.

Even if the controller is optimally designed from the very
beginning, some on-line adaptation can still be welcome, for
instance in response to unexpected disturbances or non sta-
tionarities in the process. Provided that the very qualitative
knowledge needed by DAFC still applies after this incidental
change in the process behavior, the controller could be able to
rapidly absorb the perturbation.

The preliminary results demonstrate the feasibility of the
multiple steps ahead DAFC even if some important issues
have still to be treated. We would like to explicitly integrate in-
formation like the saturation of the actuators into the learning
process in order to improve and accelerate it. Another prob-
lem that needs to be overcome is the sensibility of the learning
process to the quality of the plant model. Even if the perfor-
mance of the controller will always depend strongly on it, we
think that the learning process could be made more robust to a
bad model.
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