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1 Introduction

Q-learning [Watkins,1989] is a recent form of Reinforcement Learning algorithm that does not
need a model of its environment and can be used on-line.

2 The algorithm

Let the world state at time t be xt, and assume that the learning system then chooses action
at. The immediate result is that a reward rt is received by the learner and the world undergoes
a transition to the next state xt+1. The objective of the learner is to choose actions maximizing
discounted cumulative rewards over time. More precisely, let γ be a specified discount factor in
[0 1). The total discounted return (or simply return) received by the learner starting at time t is
given by :

r(t) = rt + γrt+1 + γ2rt+2 + · · · + γnrt+n + · · · (1)

The discount factor γ is a number in the range of [0..1] and is used to weight near term rein-
forcement more heavily than distant future reinforcement. The closer γ is to 1 the greater the
weight of future reinforcements.

The objective is to find a policy π, or rule for selecting actions, so that the expected value of
the return is maximized. It is sufficient to restrict attention to policies that select actions based
only on the current state (called stationary policies) : π(xt) = at. For any such policy π and for
any state x we define :

V π(x) = E{r(0)|x0 = x; ai = π(xi) for all i ≥ 0} (2)

The expected total discounted return received when starting in state x and following policy
π thereafter. If π is an optimal policy we also use the notation V ∗ for V π . Many dynamic
programming-based reinforcement learning methods involve trying to estimate the state values
V ∗(x) or V π(x) for a fixed policy π.

Q-learning, is a simple incremental algorithm developed from the theory of dynamic program-
ming [Ross,1983] for delayed reinforcement learning. In Q-learning, policies and the value func-
tion are represented by a two-dimensional lookup table indexed by state-action pairs. Formally,
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for each state x and action a let :

Q∗(x, a) = E{r0 + γV ∗(x1)|x0 = x; a0 = a} (3)

= R(x, a) + γ
∑

y

Pxy(a)V ∗(y) (4)

where R(x, a) = E{r0|x0 = x; a0 = a} and Pxy(a) is the probability of reaching state y as a
result of taking action a in state x. It follows that

V ∗(x) = max
a

Q∗(x, a) (5)

Intuitively, Equation 4 says that the state-action value, Q∗(x, a), is the expected total discounted
return resulting from taking action a in state x and continuing with the optimal policy thereafter.
More generally, the Q function can be defined with respect to an arbitrary policy π as

Qπ(x, a) = R(x, a) + γ
∑

y

Pxy(a)V π(y) (6)

and Q∗ is just Qπ for an optimal policy π.

The Q-learning algorithm works by maintaining an estimate of the Q∗ function, which we denote
by Q̂∗ , and adjusting Q̂∗ values (often just called Q-values) based on actions taken and reward
received. This is done using Sutton’s prediction difference, or TD error [Sutton,1988] - the
difference between (the immediate reward received plus the discounted value of the next state)
and (the Q-value of the current state-action pair) :

r + γV̂ ∗(y) − Q̂∗(x, a) (7)

where r is the immediate reward, y is the next state resulting from taking action a in state x,
and V̂ ∗(x) = maxa Q̂∗(x, a). Then the values of Q̂∗ are adjusted according to

Q̂∗(x, a) = (1 − α)Q̂∗(x, a) + α(r + γV̂ ∗(y)) (8)

where α ∈ (0 1] is a learning rate parameter. Note that the current estimate of the Q∗ function
implicitly defines a greedy policy by π(x) = arg max

a
Q̂∗(x, a). That is, the greedy policy is to

select actions with the largest estimated Q-value.

It is important to note that the Q-learning method does not specify what actions the agent
should take at each state as it updates its estimates. In fact, the agent may take whatever
actions it pleases. This means that Q-learning allows arbitrary experimentation while at the
same time preserving the current best estimate of states’ values. This is possible because Q-
learning constructs a value function on the state-action space, instead of the state space. It
constructs a value function on the state space only indirectly. Furthermore, since this function
is updated according to the ostensibly optimal choice of action at the following state, it does
not matter what action is actually followed at that state. For this reason, the estimated returns
in Q-learning are not contaminated by ”experimental” actions [Watkins,1989], so Q-learning is
not experimentation-sensitive.

To find the optimal Q function eventually, however, the agent must try out each action in every
state many times. It has been shown [Watkins,1989 ; Dayan,1992] that if equation 8 is repeatedly
applied to all state-action pairs in any order in which each state-action pair’s Q-value is updated
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infinitely often, then Q̂∗ will converge to Q∗ and V̂ ∗ will converge to V ∗ with probability 1 as
long as α is reduced to 0 at a suitable rate. This is why the policy π(x) = arg maxa Q̂∗(x, a) is
only used a part of the time in order to be able to explore the state-action space completely.
At each iteration i, we will choose to make either a random action ai = random or the optimal
action ai = π(xi). We will take the first possibility (the random action) with a probability of
ε. At the beginning of the learning ε must be huge (near 1). At the end of the learning, when
Q̂∗ ≈ Q∗, we will set ε = 0 to always use the optimal policy. It is, as always, the compromise
between exploitation-exploration.

Shortly, we have :
– α : learning rate
– γ : discount factor The closer γ is to 1 the greater the weight is given to future reinforcements.
– ε : probability to use a random action instead of the optimal policy.

3 The robot example

An illustration of these concepts is the robot example. At each time step, the robot can choose
one of the following action :
– move its arm (yellow line) up.
– move its arm (yellow line) down.
– move its hand (red line) right.
– move its hand (red line) left.

The reward R(x, a) the robot gets is simply the number of pixel on the screen it has moved
(positive values for movement to the right and negative values for movement to the left). The
goal is that the robot move to the right the faster possible.

Some remarks :
– You can see on the upper-left part of the screen the average speed of the robot. That is :

average speed =
(M :=) Number of pixel moved to the right

(T :=) Number of iteration
. (9)

When you press the [reset speed counter] button, the program set M = 0 and T = 0.
– Small value of γ will not allow the robot to extend its arm forward to the right because during

all this time the robot gets no reward. You must set a high value for γ otherwise the robot
doesn’t see that, far in the future, it is useful to have its arm extended.

– ε should be set a high value (.8) at the beginning of the learning process. ε should be set to zero
when the optimal control policy has been found. To see if an optimal policy has been found,
press the [reset speed counter] button and wait a little until the [speed counter] stabilizes.
You have now a correct evaluation of the speed of the robot. Continue the learning process
until you can’t increase this value anymore.

– You can compete with the algorithm ! See by yourself that the Q-learning is the best ! Try to
beat it ! How to do ? Press the [stop] button. Press the [reset speed counter] button. Move the
arm and the hand of the robot using the 4 arrow keys : [UP/DOWN] moves the arm (yellow
line) and [LEFT/RIGHT] move the hand (red line). Move the robot until the [speed counter]
stabilizes. Now the result : Do you really go faster than Q-learning ?
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